Publications Details

Publications / Report

Encapsulation of metal nanocluster catalysts in silica materials via an inverse micelle/sol-gel synthesis

Martino, Anthony

Nanometer sized metal particles were encapsulated in the micropores of xerogels and aerogels. The synthesis involves the sequential reduction of a metal salt followed by sol-gel processing in an inverse micelle solution. The inverse micelle solution solubilizes the metal salt and provides a micro-reactor for the nucleation, growth, and stabilization of the nanometer sized clusters. Hydrolysis and condensation of an added siloxane precursor produces a wet gel embedding the particles. Characterization of the particle size and composition and the particle growth process was completed with transmission electron microscopy (TEM), electron diffraction, and UV-visible absorption spectrometry. Characterization of the gel surface areas was completed with N{sub 2} porosimetry. Material properties determined as a function of the gel precursor (TEOS vs. a pre-hydrolyzed form of TEOS), the water to gel precursor reaction stoichiometry, and surfactant concentration are discussed in terms of the unique solution chemistry occurring in the micro-heterogeneous inverse micelle solutions. Finally, catalyst development and catalyst activity of the materials are discussed. 1-hexene hydrogenation was chosen as a model reaction.