Publications Details
Electrooptic effects and photosensitivities of PLZT thin films
Although the feasibility of using PZT and PLZT films for optical data processing applications, such as optical storage disks, image comparators, and spatial light modulators, has clearly been established, most of the critical parameters related to the storage and readout processes still need to be evaluated. Optical readout techniques capable of nondestructively determining the value of polarization are based either on the quadratic electrooptic effect or on a photocurrent response. In reflection, large electrooptic retardations (>60{degrees}) have now been achieved with thin PZT films ({approx equal} 0.5 {mu}m) under conditions that optimize interference effects. These results are quite attractive for device applications. Model calculations, based on the equations of reflection ellipsometry, have been used to develop a framework for understanding those results. The magnitude of the photocurrent response has also been used to determine the polarization state. However, the photocurrent always has the same sign, regardless of the sign of the polarization, which suggests the presence of a strong bias field due to at least one of the interfaces. In addition, the accumulation of space charge after a succession of measurements suppresses the photocurrent transient, which severely limits the utility of a photocurrent based readout. 7 refs., 9 figs.