Publications Details
Effects of two-phase flow on the deflagration of porous energetic materials
The combustion behavior of energetic materials (e.g., solid propellants) has long been of interest in the fields of propulsion and pyrotechnics. In many such applications, it is becoming increasingly clear that two-phase flow effects play an important role, especially since, during combustion, most homogeneous solid propellants develop thin multi-phase layers at their surfaces in which finite-rate exothermic reactions occur. In addition, there is a growing interest in the behavior of porous energetic solids, since even initially dense materials can develop significant void fractions if, at any time, they are exposed to abnormal thermal environments. The deflagration characteristics of such ``damaged`` materials may then differ significantly from those of the pristine material due, at least in part, to gas flow in the solid/gas preheat region. The presence of gas in the porous solid in turn results in a more pronounced two-phase effect in the multi-phase surface layer, such as in the liquid melt region of nitramine propellants, which thus tend to exhibit extensive bubbling in an exothermic foam layer. The present analysis is largely applicable to this latter class of propellants.