Publications Details
Disruption runaway modeling, ripple effects and energy limits
Russo, A.J.
Several models of runaway electron generation during a disruption are described and applied to the problem of determining the radiation loss and energy limit of runaway electrons. In particular the prediction of orbits and energy limits for proposed ITER design are discussed. It was found that resonance between the electron gyrofrequency and the fundamental ripple frequency can lead to large synchrotron radiation losses and create an upper bound on runaway energy. Interactions with the second harmonic of the ripple field are very sensitive to ripple amplitude and may lead to a further reduction in runaway energy. In ITER this effect can limit the runaway energy to values of 270 MeV. A lump circuit model of the plasma can be used to determine the coupled interactions of the runaway currents with the plasma and control circuit currents. Depending on what is assumed about the perpendicular energy of the runaway electrons. Maximum values of runaway energy predicted for ITER are in the range of 35 to 120 MeV. 4 refs., 15 figs.