Publications Details
Development of rate expressions for polymer decomposition reactions
Organic polymer materials are used frequently in structures and transportation systems. Polymer materials may provide fuel for a fire or be damaged catastrophically due to an incident heat flux. Modeling the response of such structures and systems in fire environments has important applications in safety and vulnerability analyses. The decomposition chemistry of the organic polymer materials is an important factor in many analyses. To provide input to numerical models for hazard and vulnerability analyses, the thermal decomposition chemistry of organic polymers is being experimentally investigated using TGA-FTIR, GC-FTIR, infrared microprobe (IRMP), and DSC Both TGA-FTIR and DSC experiments are done with unconfined and partially confined samples. Unconfined samples are used to examine initial decomposition reactions. Partially confined samples are used to examine reversible and secondary reactions. This paper discusses phenomena pertinent to using the aforementioned techniques to develop rate expressions for polymer decomposition reactions, and a specific example illustrating development of rate expressions for decomposition of PMMA is given.