Publications Details
Design rules and reality check for carbon-based ultracapacitors
Eisenmann, E.T.
Design criteria for carbon-based Ultracapacitors have been determined for specified energy and power requirements, using the geometry of the components and such material properties as density, porosity and conductivity as parameters, while also considering chemical compatibility. This analysis shows that the weights of active and inactive components of the capacitor structure must be carefully balanced for maximum energy and power density. When applied to nonaqueous electrolytes, the design rules for a 5 Wh/kg device call for porous carbon with a specific capacitance of about 30 F/cm{sup 3}. This performance is not achievable with pure, electrostatic double layer capacitance. Double layer capacitance is only 5 to 30% of that observed in aqueous electrolyte. Tests also showed that nonaqeous elcctrolytes have a diminished capability to access micropores in activated carbon, in one case yielding a capacitance of less than 1 F/cm{sup 3} for carbon that had 100 F/cm{sup 3} in aqueous electrolyte. With negative results on nonaqueous electrolytes dominating the present study, the obvious conclusion is to concentrate on aqueous systems. Only aqueous double layer capacitors offer adequate electrostatic charging characteristics which is the basis for high power performance. There arc many opportunities for further advancing aqueous double layer capacitors, one being the use of highly activated carbon films, as opposed to powders, fibers and foams. While the manufacture of carbon films is still costly, and while the energy and power density of the resulting devices may not meet the optimistic goals that have been proposed, this technology could produce true double layer capacitors with significantly improved performance and large commercial potential.