Publications Details

Publications / Conference

Deep Level Defect Studies in MOCVD-Grown In(x)Ga(1-x)As(1-y)N(y) Films Lattice-Matched to GaAs

Allerman, A.A.

Deep level defects in MOCVD-grown, unintentionally doped p-type InGaAsN films lattice matched to GaAs were investigated using deep level transient spectroscopy (DLTS) measurements. As-grown p-InGaAsN showed broad DLTS spectra suggesting that there exists a broad distribution of defect states within the band-gap. Moreover, the trap densities exceeded 10{sup 15} cm{sup {minus}3}. Cross sectional transmission electron microscopy (TEM) measurements showed no evidence for threading dislocations within the TEM resolution limit of 10{sup 7} cm{sup {minus}2}. A set of samples was annealed after growth for 1800 seconds at 650 C to investigate the thermal stability of the traps. The DLTS spectra of the annealed samples simplified considerably, revealing three distinct hole trap levels with energy levels of 0.10 eV, 0.23 eV, and 0.48 eV above the valence band edge with trap concentrations of 3.5 x 10{sup 14} cm{sup {minus}3}, 3.8 x 10{sup 14} cm {sup {minus}3}, and 8.2 x 10{sup 14} cm{sup {minus}3}, respectively. Comparison of as-grown and annealed DLTS spectra showed that post-growth annealing effectively reduced the total trap concentration by an order of magnitude across the bandgap. However, the concentration of a trap with an energy level of 0.48 eV was not affected by annealing indicating a higher thermal stability for this trap as compared with the overall distribution of shallow and deep traps.