Publications Details
Considerations relating to pulsed-beam modification of materials
Myers, S.M.; Follstaedt, D.M.; Bourcier, R.J.; Dugger, M.T.; Mcintyre, D.C.; Rader, D.J.
Ion implantation has been shown to produce unique improvements in the properties of a wide range of materials. This technology has been extensively used for doping of semiconductors, where the required doses and implantation depths are relatively modest and readily achieved with commercial implanters. Other applications of ion implantation currently being pursued at a commercial level include the synthesis of buried second-phase layers in Si and the improvement of metal surface properties such as hardness, friction, wear rate, and corrosion. However, these applications have been severely constrained by the costs of treating large surface areas with the high ion doses required, and by the need to produce modified layers thicker than the range of the sub-MeV ions available from presently available commercial high-flux ion implanters. It therefore seems worthwhile to consider whether pulsed ion accelerators may offer advantages for such applications by providing high ion fluxes at MeV energies. The previously reported applications of pulsed accelerators to materials modification have used sub-MeV ion energies. The purpose of this article is to being these considerations the perspective of materials scientists who use ion implantation. We comment on needed extensions in implantation capabilities while leaving to others the question of whether these needs can be met with pulsed-beam technology. Further, in order to illustrate the kinds of beneficial materials modifications that can be achieved with implantation, we provide examples from recent work at Sandia National Laboratories, where large improvements have been realized in the tribological properties and strengths of Fe and A{ell} alloys. 10 refs., 6 figs.