Publications Details
Computational Modeling To Adapt Neutralizing Antibody
Monoclonal antibodies (mAbs) is the leading therapy for viral infections because it provides immediate protection and can be administered at higher levels than in a natural immune response. Finding mAbs that neutralize a broad spectrum of viral targets has proven difficult because many species and strains exist and blanket targeting is a slow and laborious process to experimentally screen 108 variants. A new method is needed to rapidly redesign mAbs for homologous targets. This project speeds up redesign using structure-based computational design to reduce the mAbs search space to a manageable level and screen mutants at a much higher rate than in experiments. Computation will also provide critical knowledge about the fundamental interactions. The project will adapt S230, a human antibody that neutralizes SARS-CoV, to neutralize SARS-COV-2.