Publications Details

Publications / Conference Poster

Complex geometry effects on subsonic cavity flows

Casper, Katya M.; Wagner, Justin W.; Beresh, Steven J.; Henfling, John F.; Spillers, Russell W.; Pruett, Brian O.

The flow over aircraft bays are often represented using rectangular cavities; however, this simplification neglects many features of the actual flight geometry which could affect the unsteady pressure field and resulting loading in the bay. To address this shortcoming, a complex cavity geometry was developed to incorporate more realistic aircraft-bay features including shaped inlets, internal cavity variations, and doors. A parametric study of these features was conducted at subsonic Mach numbers. Increased higher frequency content and higher-amplitude fluctuations were found in the complex geometry that could produce severe loading conditions for stores carried within the bays. High-frequency content was generated by features that constricted the flow such as leading edge overhangs, internal cavity variations, and the presence of closed doors. Also, the Rossiter modes of the complex configurations were usually shifted in frequency from the simple rectangular cavity, and many modes had much higher amplitudes. Broadband frequency components measured at the aft wall of the complex cavities were also significantly higher than in the rectangular geometry. These changes highlight the need to consider complex geometric effects when predicting the flight loading of aircraft bays.