Publications Details

Publications / Report

Characterization of impact-limiting material

Duffey, T.A.; Glass, R.E.; Mcconnel, P.

Methods of mechanical and thermal testing specifically directed toward evaluation of impact-limiting materials for radioactive material transportation containers are presented. Associated figures of merit and procedures for rank-ordering the materials are also developed. Based on testing and evaluation procedures developed herein, thermal and mechanical results are presented for high- and low-density aluminum honeycombs, polyurethane foams, and aluminum foams. On a minimum mass basis, the high-density aluminum honeycomb is found to be a superior impact energy absorber up to the point of lock up. On a minimum volume basis, the high-density polyurethane foam is far superior, however. Based on the thermal figures of merit, the high-density polyurethane foam was found to be the most favorable material.