Publications Details
Characterization and electrical properties of copper films grown via direct liquid coinjection of (hfac)Cu(TMVS) and TMVS
This report documents the characterization of thin copper films grown at Sandia as part of on-going research in copper CVD involving Sandia and Schumacher, Inc. The films have been grown using the copper (1) CVD precursor (hfac)Cu(TMVS), which was first developed by Schumacher and has been supplied to Sandia by that company. The CVD was performed using a novel technique in which direct liquid coinjection of (hfac)Cu(TMVS) and TMVS (trimethylvinylsilane) into a commercial reactor is utilized. Films were deposited onto silicon nitride substrates at temperatures in the range of 220-250{degrees}C, with growth rates in the range of 400-800 {angstrom}/min. These films have been analyzed by a variety of techniques, with an emphasis on factors that may influence the resistivity, including thickness, purity, density, grain size, and stress. The authors show that these films have as-deposited resistivities of 1.86 {+-} 0.1 {mu}{Omega}-cm, or 1.82 {+-} 0.1 {mu}{Omega}-cm after accounting for surface scattering effects. The latter value is only 0.14 {mu}{Omega}-cm above the value for high purity bulk copper. The authors discuss factors that may account for this residual resistivity. They also discuss the effects of film surface roughness on film thickness and resistivity measurements, noting some potential problems associated with the commonly used surface profilometry technique. These results help to establish (hfac)Cu(TMVS) as one of the most promising available copper CVD precursors for metallization applications.