Publications Details

Publications / Journal Article

Channeling light into quantum-scale gaps

Kekatpure, Rohan D.; Davids, Paul D.

We develop a discrete plasmonic mode-matching technique to investigate the ultimate limits to plasmonic light concentration down to the length scales required for observation of quantum-mechanical phenomena, including plasmon-assisted electron tunneling. Our mode-matching calculations, verified by direct numerical solution of Maxwell's equations, indicate achievable coupling efficiencies of >20% into symmetric bound gap plasmon modes in sub-10-nm gaps. For a given operating wavelength and a choice of material parameters, we demonstrate the existence of a specific width that maximizes enhancement of the electromagnetic field coupled into the gap. More generally, our calculations establish an intuitive and a computationally efficient framework for determining coupling efficiencies in and out of quantum-scale waveguides. © 2011 American Physical Society.