Publications Details

Publications / Conference

Brownian trail rectified

Hurd, A.J.

The experiments described here indicate when one of Nature's best fractals -- the Brownian trail -- becomes nonfractal. In most ambient fluids, the trail of a Brownian particle is self-similar over many decades of length. For example, the trail of a submicron particle suspended in an ordinary liquid, recorded at equal time intervals, exhibits apparently discontinuous changes in velocity from macroscopic lengths down to molecular lengths: the trail is a random walk with no velocity memory'' from one step to the next. In ideal Brownian motion, the kinks in the trail persist to infinitesimal time intervals, i.e., it is a curve without tangents. Even in real Brownian motion in a liquid, the time interval must be shortened to {approximately}10{sup {minus}8}s before the velocity appears continuous. In sufficiently rarefied environments, this time resolution at which a Brownian trail is rectified from a curve without tangents to a smoothly varying trajectory is greatly lengthened, making it possible to study the kinetic regime by dynamic light scattering. Our recent experiments with particles in a plasma have demonstrated this capability. In this regime, the particle velocity persists over a finite step length'' allowing an analogy to an ideal gas with Maxwell-Boltzmann velocities; the particle mass could be obtained from equipartition. The crossover from ballistic flight to hydrodynamic diffusion was also seen. 8 refs., 1 fig.