Publications Details
Atomic-scale measurement of liquid metal wetting and flow
The flow behavior of liquid metals at solid interfaces is critically important to successful welding, brazing, soldering and the synthesis of metal/ceramic composites. Continuum flow models frequently fail to reliably predict wetting behavior because they are based upon bulk fluid properties, rather than microscopic flow processes at the actual solid/liquid interface. Improved understanding of interfacial liquid flow is hindered by the paucity of experimental measurements at this microscopic level. This report describes a new approach, Acoustic Wave Damping (AWD), to measuring viscoelastic properties of liquid metal layers in the nanometer thickness regime. The AWD experiment measures the frequency response of a quartz crystal microbalance in contact with a viscoelastic layer. An equivalent circuit model and continuum acoustic theory relate this electrical response to mechanical energy storage and dissipative loss. For viscoelastic layers of known thickness and density, a quantitative complex shear modulus can be determined from the AWD data. Studies of self-assembled monolayers (SAMs) demonstrate sensitivity to monolayer structure and bonding. Molecular dynamics simulations relate these atomistic properties to the ensemble response. AWD measurements of ultra-thin liquid indium layers reveal metastable undercooling for 10--50 nm thick indium layers. Continued refinement of the AWD technique and the addition of complementary interface characterization techniques will enable definitive studies of ultra-thin molten metals.