Publications Details

Publications / SAND Report

Assessment of tank designs for hydrogen storage on heavy duty vehicles using metal hydrides

Allendorf, Mark; Horton, Robert D.; Stavila, Vitalie; Witman, Matthew D.

The objective of this project was to evaluate material-based hydrogen storage solutions as a replacement for high-pressure hydrogen gas or liquid hydrogen on Class 7 or 8 tractor fuel cell electric vehicles. The project focused on low-density main-group hydrides, a well-known class of materials for hydrogen storage. Prior research has considered metal amides as storage materials for light-duty vehicles but not for heavy-duty applications. The project established the basis for further development of storage systems of this type for heavy duty vehicles (HDV). Systems analysis of an HDV storage system comprised of a tank and associated balance of plant (piping, coolant tubes, burner) was performed to determine the usable hydrogen capacity. A composite storage material comprised of a metal hydride mixed with a high thermal-conductivity carbon is predicted to have a usable hydrogen volumetric capacity comparable to or exceeding that of 700 bar pressurized hydrogen gas. The gravimetric capacity of this material is also predicted to be competitive with pressurized gas, particularly if costly carbon fiber composite Type III or Type IV tanks are excluded. The storage system design parameters and material properties served as inputs to a second model that simulates fuel cell operation in conjunction with the storage system during an HDV drive cycle. The results show that sufficient hydrogen pressure can be produced to operate a Class 8 HDV, yielding a range of ~480 miles. These results are particularly relevant for high-impact regions, such as the South Coast Air Quality Management District, for which an economical vehicular hydrogen storage system with minimal impact on cargo capacity could accelerate adoption of heavy-duty fuel cell electric vehicles. An additional benefit is that knowledge generated by this project can assist in development of material-based storage for stationary applications such as microgrids and backup power for data centers.