Publications Details

Publications / SAND Report

Assessing the Influence of Process Induced Voids and Residual Stresses on the Failure of Additively Manufactured 316L Stainless Steel

Karlson, Kyle N.; Stender, Michael S.; Bergel, Guy L.

It is well established that the variability in mechanical response and ultimate failure of additively manufactured metals correlates to uncertainties introduced in the build process, among which include internal void structure and residual stresses. Here, we quantify the aforementioned variabilities in 316L stainless steels by conducting simulations in Sierra/SM of the specimens/geometries used in Sandia's third fracture challenge (SFC3). We leverage the simulations and experimental work presented in 6 to construct a statistical representation of the internal void structure of the tension specimen used for material parameter calibration as well as the "challenge" geometry. Voided mesh samples of both specimens are generated given a set of statistical variables, and the physics simulations are conducted for multiple sets of realization to determine the effects of void structure on variability in the fracture paths and displacement-to-failure. Lastly, a series of simulations are presented which highlight the effect of the powder bed fusion additive manufacturing process on the formation of residual stresses in the as-built geometries.