Publications Details
Assessing the effect of surface roughness on the wetting of Cu and Pd by Sn/Pb solder
Artificially enhancing the solder ability of a surface can at times prove to be advantageous. As chip packaging geometries become increasingly complex, the issue of solder wettability becomes significantly more important. Here, the authors examine the effect of varying substrate surface roughness on solder wettability (area of spread) and the time required to reach terminal area of spread. Results are given for solder wetting experiments that were performed on copper (Cu) substrates having chemically etched surfaces, as well as, Alumina (Al{sub 2}O{sub 3}) substrates electroplated with various thicknesses of palladium (Pd). The effect of etching on the Al{sub 2}O{sub 3}/Pd specimens was also examined as related to surface roughness and solder spread. These surface treatments were found to significantly alter wettability. Substantial improvements were observed in both solder wettability and time to wet with the uniformly etched Cu surfaces used in this study. For the Cu substrates, the average terminal area of spread is shown to be directly related to the substrates root mean square (RMS) surface roughness. The rate of wetting of the Cu surfaces is also shown to increase when chemical surface treatment is used. Maximum wetting on the Al{sub 2}O{sub 3}/Pd specimens was found to be directly related to surface smoothness. The average terminal area of spread of Al{sub 2}O{sub 3}/Pd specimens is inversely related to the vertical distance from the highest surface peak to the deepest surface valley (i.e., peak-to-peak variation).