Publications Details

Publications / Journal Article

An Ab Initio-Derived Force Field for Amorphous Silica Interfaces for Use in Molecular Dynamics Simulations

Senanayake, Hasini S.; Wimalasiri, Pubudu N.; Godahewa, Sahan M.; Thompson, Ward H.; Greathouse, Jeffery A.

Here, we present a classical interatomic force field, silica-DDEC, to describe the interactions of amorphous and crystalline silica surfaces, parametrized using density functional theory-based charges. Charge schemes for silica surfaces were developed using the density-derived electrostatic and chemical (DDEC) method, which reproduces atomic charges of the periodic models as well as the electrostatic potential away from the atom sites. Lennard–Jones parameters were determined by requiring the correct description of (i) the amorphous silica density, coordination defects, and local coordination geometry, relative to experimental measurements, and (ii) water-silica interatomic distances compared with ab initio results. Deprotonated surface silanol sites are also described within the model based on DDEC charges. The result is a general electronic structure-derived model for describing fully flexible amorphous and crystalline silica surfaces and interactions of liquids with silica surfaces of varying structure and protonation state.