Publications Details
Accelerated 54{degree}C irradiated test of Shippingport neutron shield tank and HFIR vessel materials
Hawthorne, J.R.; Rosinski, S.T.
Charpy V-notch specimens (ASTM Type A) and 5.74-mm diameter tension test specimens of the Shippingport Reactor Neutron Shield Tank (NST) (outer wall material) were irradiated together with Charpy V-notch specimens of the Oak Ridge National Laboratory (ORNI), High,, Flux Isotope Reactor (HFIR) vessel (shell material), to 5.07 {times} 10{sup 17} n/cm{sup 2}, E > 1 MeV. The irradiation was performed in the Ford Nuclear Reactor (FNR), a test reactor, at a controlled temperature of 54{degrees}C (130{degrees}F) selected to approximate the prior service temperatures of the cited reactor structures. Radiation-induced elevations in the Charpy 41-J transition temperature and the ambient temperature yield strength were small and independent of specimen test orientation (ASTM LT vs. TL). The observations are consistent with prior findings for the two materials (A 212-B plate) and other like materials irradiated at low temperature (< 200{degrees}C) to low fluence. The high radiation embrittlement sensitivity observed in HFIR vessel surveillance program tests was not found in the present accelerated irradiation test. Response to 288{degrees}C-168 h postirradiation annealing was explored for the NST material. Notch ductility recovery was found independent of specimen test orientation but dependent on the temperature within the transition region at which the specimens were tested.