Publications Details
A New Constitutive Model for Rock Salt Viscoplasticity: Formulation, Implementation, and Demonstrations
This paper presents the formulation, implementation, and demonstration of a new, largely phenomenological, model for the damage-free (micro-crack-free) thermomechanical behavior of rock salt. Unlike most salt constitutive models, the new model includes both drag stress (isotropic) and back stress (kinematic) hardening. The implementation utilizes a semi-implicit scheme and a fall-back fully-implicit scheme to numerically integrate the model's differential equations. Particular attention was paid to the initial guesses for the fully-implicit scheme. Of the four guesses investigated, an initial guess that interpolated between the previous converged state and the fully saturated hardening state had the best performance. The numerical implementation was then used in simulations that highlighted the difference between drag stress hardening versus combined drag and back stress hardening. Simulations of multi-stage constant stress tests showed that only combined hardening could qualitatively represent reverse (inverse transient) creep, as well as the large transient strains experimentally observed upon switching from axisymmetric compression to axisymmetric extension. Simulations of a gas storage cavern subjected to high and low gas pressure cycles showed that combined hardening led to substantially greater volume loss over time than drag stress hardening alone.