Publications Details

Publications / SAND Report

A Multi-Instance learning Framework for Seismic Detectors

Ray, Jaideep R.; Wang, Fulton W.; Young, Christopher J.

In this report, we construct and test a framework for fusing the predictions of a ensemble of seismic wave detectors. The framework is drawn from multi-instance learning and is meant to improve the predictive skill of the ensemble beyond that of the individual detectors. We show how the framework allows the use of multiple features derived from the seismogram to detect seismic wave arrivals, as well as how it allows only the most informative features to be retained in the ensemble. The computational cost of the "ensembling" method is linear in the size of the ensemble, allowing a scalable method for monitoring multiple features/transformations of a seismogram. The framework is tested on teleseismic and regional p-wave arrivals at the IMS (International Monitoring System) station in Warramunga, NT, Australia and the PNSU station in University of Utah's monitoring network.