Awards & Other News

R&D 100 Awards

2013

Membrane Projection Lithography

R&D100 Entry 2013: Membrane Projection Lithography
This fabrication technique enables the creation of a diverse array of microscopic 3D structures with macroscopic impact. For instance, the technique can be used to create 3-dimensional integrated circuits, the next step in the evolution of 2-dimensional microprocessors. It is also capable of creating structured electromagnetic materials. Currently, the technique is being used to make thermal antennas which can control the direction of heat emitted from an object, potentially easing cooling and heating needs for satellites or perhaps even buildings and cars.

Watch R&D100 Entry 2013: Membrane Projection Lithography

2012

Image of 2012-2

Microsystems Enabled Photovoltaics wins 2012 R&D 100 Award (23 MB PDF)
Sandia developed tiny glitter-sized photovoltaic (PV) cells that could revolutionize solar energy collection. The crystalline silicon micro-PV cells will be cheaper and have greater efficiencies than current PV collectors. Micro-PV cells require relatively little material to form well-controlled, highly efficient devices. Cell fabrication uses common microelectronic and micro-electromechanical systems techniques. They are 10 times thinner than conventional cells, yet perform at about the same efficiency.

Video: R&D100 Entry 2012: Breakthrough: micro-electronic photovoltaics
Video: Microsystems Enabled Photovoltaics

2011

Image of 2011-4

R&D100 Entry 2011: Microresonator Filters and Frequency References (8 MB PDF)
Our miniature acoustic resonators perform RF filtering and frequency synthesis in next-generation wireless devices—offering higher performance in a smaller package with a lower price.

Our microresonators are miniature acoustic resonators fabricated using complementary metal-oxide semiconductor (CMOS)-compatible microfabrication techniques. When grouped together, our microresonators operate as filters; they provide frequency selection in radios and other electronic equipment. When connected with transistor electronics, microresonators can provide frequency reference functions (such as clocking) to radios, microprocessors, and other electronic devices.

Video: R&D100 Entry 2011: Microresonator Filters and Frequency References

2010

Image of 2010-4

Acoustic Wave Biosensor for Rapid-Point-of-Care Medical Diagnosis (6 MB PDF)
The device, a joint effort of Sandia Labs and the University of New Mexico Health Sciences Center, is essentially a handheld, battery-powered, portable detection system capable of identifying a wide range of medically relevant pathogens from th eir biomolecular signatures. Detection can occur within minutes, not hours, at the point of care, whether that care is in a physician’s office, a hospital bed, or at the scene of a biodefense or biomedical emergency. According to the researchers, “The Acoustic Wave Biosensor provides fast, low-cost diagnostic results with as good or better sensitivity than traditional techniques.” The device’s sensor array works like a miniature analytical balance, weighing the amount of pathogen that binds to its surfaces. The pathogen-bound sensor acts like a spring with a small weight bouncing at one end. As more pathogens stick to the surface, the weight on the spring increases, causing the spring’s bouncing speed to decrease by a measurable amount. The sensors detect minute weight differences by this method. A variety of sticky substances (ligands) attach to different pathogens. Surface tension draws the sample over the sensor, so no pumps or valves are required. This makes the sensors smaller, more reliable, less expensive to manufacture, and the process extends the operating time of the rechargeable batteries. System control, data analysis and reporting are performed by a personal digital assistant (PDA).

Video: R&D100 Entry 2010: Acoustic Wave Biosensors for Rapid Point-of-Care Medical Diagnostics

Image of 2010_2-4

Micro Power Source (3 MB PDF)
You’ve accepted that batteries run out of power and that newer batteries are rechargeable in wall electric sockets. But why should you go through all that? Why not a battery covered by a thin photovoltaic film? Just like on rooftops, the photovoltaic surface could harvest sunlight and turn it into electricity, recharging the battery in an ongoing process. This work, joint with Pacific Northwest National Laboratory and Front Edge Technology Inc. in Baldwin Park, Calif., was originally part of a Defense Advanced Research Projects Agency program, but commercial applications were “evident from the start,” the researchers wrote.

Image of 2010_3-2

The most likely immediate applications of the durable batteries are self-powered environmental sensors, self-powered tags for material tracking, and self-powered ‘smart’ cards to enhance user features and security. The key feature for the micropower source is a volume of only one microliter, yet a high peak-power density greater than 1,000 watts per liter. This makes the device useful for powering wireless microsystems that sense, record, transmit and/or actuate. The photovoltaic battery stack itself is only five millimeters in diameter and approximately 50 microns thick. (A human hair is approximately 70 microns thick.)

Video: R&D100 Entry 2010: Micro Power Source

2009

Image of 2009-2

ltralow-Power Silicon Microphotonic Communication Platform (3MB PDF)
An ultra-low-power microphotonic communications platform made of silicon, for wavelength division multiplexed communications within high performance computers. The ultrasmall components establish a platform of elements capable of addressing the bandwidth and power consumption problems of high-performance computer and data communications networks. Silicon resonant modulators demonstrate for the first time 100-microwatts/gigabit/second optical data transmission on a silicon CMOS-compatible platform. Together with the first high-speed silicon bandpass switches, the platform enables optical data transmission and routing on a silicon platform at nanosecond switching speeds with up to 100-times less power consumption and 100 times the bandwidth density compared to traditional electronic approaches.

Video: R&D100 Winner 2009: Ultralow-Power Silicon Microphotonic Communications Platform

Image of 2009_2-4

Artificial Retina
Sandia shares a part of this award for moving research forward to enable the blind to see. The project employs a small video camera on a patient’s glasses sending images to a compact image processor on the patient’s belt. The processor commands an implant to deliver the desired pulse of current to an electrode array attached to the patient’s retinal tissue. This inner-eye array stimulates the retinal tissue nerves which ultimately connect to nerves leading to the visual cortex of the brain where the patient sees an image. The award was given to a multi-lab/industry collaboration funded by DOE, initiated by Oak Ridge National Laboratory, and submitted for an award by Lawrence Livermore National Laboratory. Sandia is developing MicroElectroMechanical Systems (MEMS) and high-voltage subsystems for advanced artificial retina implant designs. These include microtools, electronics packaging, and application-specific integrated circuits (ASICs).

Video: R&D100 Winner 2009: Artificial Retina
Video: LLNL video

2008

Image of 2008-4

Silicon Micromachined Dimensional Calibration Artifact for Mesoscale Measurement Machines
Designed to help improve measurement accuracy for miniaturized devices, such as fuel injectors, watch components, and inkjet printer parts. The Sandia MEMS-based three-dimensional physical artifact is 10 times more accurate and much less expensive than the former gold standard and can be used to calibrate a variety of inspection systems.

2007

Self-Assembling Process for Fabricating Tailored Thin Films (4MB PDF)
Project involved development of a simple soft coating process that forms optical, electrical, and magnetic thin films from self-assembled nanoparticles. Researchers developed a wet-solution-based process employing self assembly to create engineered nanocomposite thin films with tunable properties by varying particle composition, sizes, shapes, and particle packing density and geometry.

Video entry: 2007-1878P

ElectroNeedle™ Biomedical Sensor Array (1MB PDF)
Designed to help improve measurement accuracy for miniaturized devices, such as fuel injectors, watch components, and inkjet printer parts. The Sandia MEMS-based three-dimensional physical artifact is 10 times more accurate and much less expensive than the former gold standard and can be used to calibrate a variety of inspection systems.

Older R&D 100 Awards

Other Awards

LEED® Green Building Awards