An Adaptive Basis Perspective to Improve Initialization and Accelerate Training of DNNs
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
The credibility of an engineering model is of critical importance in large-scale projects. How concerned should an engineer be when reusing someone else's model when they may not know the author or be familiar with the tools that were used to create it? In this report, the authors advance engineers' capabilities for assessing models through examination of the underlying semantic structure of a model--the ontology. This ontology defines the objects in a model, types of objects, and relationships between them. In this study, two advances in ontology simplification and visualization are discussed and are demonstrated on two systems engineering models. These advances are critical steps toward enabling engineering models to interoperate, as well as assessing models for credibility. For example, results of this research show an 80% reduction in file size and representation size, dramatically improving the throughput of graph algorithms applied to the analysis of these models. Finally, four future problems are outlined in ontology research toward establishing credible models--ontology discovery, ontology matching, ontology alignment, and model assessment.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Entropy
The reversible computation paradigm aims to provide a new foundation for general classical digital computing that is capable of circumventing the thermodynamic limits to the energy efficiency of the conventional, non-reversible digital paradigm. However, to date, the essential rationale for, and analysis of, classical reversible computing (RC) has not yet been expressed in terms that leverage the modern formal methods of non-equilibrium quantum thermodynamics (NEQT). In this paper, we begin developing an NEQT-based foundation for the physics of reversible computing. We use the framework of Gorini-Kossakowski-Sudarshan-Lindblad dynamics (a.k.a. Lindbladians) with multiple asymptotic states, incorporating recent results from resource theory, full counting statistics and stochastic thermodynamics. Important conclusions include that, as expected: (1) Landauer’s Principle indeed sets a strict lower bound on entropy generation in traditional non-reversible architectures for deterministic computing machines when we account for the loss of correlations; and (2) implementations of the alternative reversible computation paradigm can potentially avoid such losses, and thereby circumvent the Landauer limit, potentially allowing the efficiency of future digital computing technologies to continue improving indefinitely. We also outline a research plan for identifying the fundamental minimum energy dissipation of reversible computing machines as a function of speed.
Abstract not provided.
Entropy
The reversible computation paradigm aims to provide a new foundation for general classical digital computing that is capable of circumventing the thermodynamic limits to the energy efficiency of the conventional, non-reversible digital paradigm. However, to date, the essential rationale for, and analysis of, classical reversible computing (RC) has not yet been expressed in terms that leverage the modern formal methods of non-equilibrium quantum thermodynamics (NEQT). In this paper, we begin developing an NEQT-based foundation for the physics of reversible computing. We use the framework of Gorini-Kossakowski-Sudarshan-Lindblad dynamics (a.k.a. Lindbladians) with multiple asymptotic states, incorporating recent results from resource theory, full counting statistics and stochastic thermodynamics. Important conclusions include that, as expected: (1) Landauer’s Principle indeed sets a strict lower bound on entropy generation in traditional non-reversible architectures for deterministic computing machines when we account for the loss of correlations; and (2) implementations of the alternative reversible computation paradigm can potentially avoid such losses, and thereby circumvent the Landauer limit, potentially allowing the efficiency of future digital computing technologies to continue improving indefinitely. We also outline a research plan for identifying the fundamental minimum energy dissipation of reversible computing machines as a function of speed.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Physical Review Letters
We adapt the robust phase estimation algorithm to the evaluation of energy differences between two eigenstates using a quantum computer. This approach does not require controlled unitaries between auxiliary and system registers or even a single auxiliary qubit. As a proof of concept, we calculate the energies of the ground state and low-lying electronic excitations of a hydrogen molecule in a minimal basis on a cloud quantum computer. The denominative robustness of our approach is then quantified in terms of a high tolerance to coherent errors in the state preparation and measurement. Conceptually, we note that all quantum phase estimation algorithms ultimately evaluate eigenvalue differences.
Physical Review B
The stability of low-index platinum surfaces and their electronic properties is investigated with density functional theory, toward the goal of understanding the surface structure and electron emission, and identifying precursors to electrical breakdown, on nonideal platinum surfaces. Propensity for electron emission can be related to a local work function, which, in turn, is intimately dependent on the local surface structure. The (1×N) missing row reconstruction of the Pt(110) surface is systematically examined. The (1×3) missing row reconstruction is found to be the lowest in energy, with the (1×2) and (1×4) slightly less stable. In the limit of large (1×N) with wider (111) nanoterraces, the energy accurately approaches the asymptotic limit of the infinite Pt(111) surface. This suggests a local energetic stability of narrow (111) nanoterraces on free Pt surfaces that could be a common structural feature in the complex surface morphologies, leading to work functions consistent with those on thermally grown Pt substrates.
Physical Review B
The first-principles computation of the surfaces of metals is typically accomplished through slab calculations of finite thickness. The extraction of a convergent surface formation energy from slab calculations is dependent upon defining an appropriate bulk reference energy. I describe a method for an independently computed, slab-consistent bulk reference that leads to convergent surface formation energies from slab calculations that also provides realistic uncertainties for the magnitude of unavoidable nonlinear divergence in the surface formation energy with slab thickness. The accuracy is demonstrated on relaxed, unreconstructed low-index aluminum surfaces with slabs with up to 35 layers.
2021 International Conference on Applied Artificial Intelligence, ICAPAI 2021
Multivariate time series are used in many science and engineering domains, including health-care, astronomy, and high-performance computing. A recent trend is to use machine learning (ML) to process this complex data and these ML-based frameworks are starting to play a critical role for a variety of applications. However, barriers such as user distrust or difficulty of debugging need to be overcome to enable widespread adoption of such frameworks in production systems. To address this challenge, we propose a novel explainability technique, CoMTE, that provides counterfactual explanations for supervised machine learning frameworks on multivariate time series data. Using various machine learning frameworks and data sets, we compare CoMTE with several state-of-the-art explainability methods and show that we outperform existing methods in comprehensibility and robustness. We also show how CoMTE can be used to debug machine learning frameworks and gain a better understanding of the underlying multivariate time series data.
High-performance computing (HPC) researchers have long envisioned scenarios where application workflows could be improved through the use of programmable processing elements embedded in the network fabric. Recently, vendors have introduced programmable Smart Network Interface Cards (SmartNICs) that enable computations to be offloaded to the edge of the network. There is great interest in both the HPC and high-performance data analytics (HPDA) communities in understanding the roles these devices may play in the data paths of upcoming systems. This paper focuses on characterizing both the networking and computing aspects of NVIDIA’s new BlueField-2 SmartNIC when used in a 100Gb/s Ethernet environment. For the networking evaluation we conducted multiple transfer experiments between processors located at the host, the SmartNIC, and a remote host. These tests illuminate how much effort is required to saturate the network and help estimate the processing headroom available on the SmartNIC during transfers. For the computing evaluation we used the stress-ng benchmark to compare the BlueField-2 to other servers and place realistic bounds on the types of offload operations that are appropriate for the hardware. Our findings from this work indicate that while the BlueField-2 provides a flexible means of processing data at the network’s edge, great care must be taken to not overwhelm the hardware. While the host can easily saturate the network link, the SmartNIC’s embedded processors may not have enough computing resources to sustain more than half the expected bandwidth when using kernel-space packet processing. From a computational perspective, encryption operations, memory operations under contention, and on-card IPC operations on the SmartNIC perform significantly better than the general-purpose servers used for comparisons in our experiments. Therefore, applications that mainly focus on these operations may be good candidates for offloading to the SmartNIC.
Physical Review B
Using the local moment counter charge (LMCC) method to accurately represent the asymptotic electrostatic boundary conditions within density functional theory supercell calculations, we present a comprehensive analysis of the atomic structure and energy levels of point defects in cubic silicon carbide (3C-SiC). Finding that the classical long-range dielectric screening outside the supercell induced by a charged defect is a significant contributor to the total energy. we describe and validate a modified Jost screening model to evaluate this polarization energy. This leads to bulk-converged defect levels in finite size supercells. With the LMCC boundary conditions and a standard Perdew-Burke-Ernzerhof (PBE) exchange correlation functional, the computed defect level spectrum exhibits no band gap problem: the range of defect levels spans ∼2.4eV, an effective defect band gap that agrees with the experimental band gap. Comparing with previous literature, our LMCC-PBE defect results are in consistent agreement with the hybrid-exchange functional results of Oda et al. [J. Chem. Phys. 139, 124707 (2013)JCPSA60021-960610.1063/1.4821937] rather than their PBE results. The difference with their PBE results is attributed to their use of a conventional jellium approximation rather than the more rigorous LMCC approach for handling charged supercell boundary conditions. The difference between standard dft and hybrid functional results for defect levels lies not in a band gap problem but rather in solving a boundary condition problem. The LMCC-PBE entirely mitigates the effect of the band gap problem on defect levels. The more computationally economical PBE enables a systematic exploration of 3C-SiC defects, where, most notably, we find that the silicon vacancy undergoes Jahn-Teller-induced distortions from the previously assumed Td symmetry, and that the divacancy, like the silicon vacancy, exhibits a site-shift bistability in p-type conditions.
Abstract not provided.
Abstract not provided.
Abstract not provided.