Publications / Journal Article

Theoretical study of intrinsic defects in cubic silicon carbide 3C -SiC

Schultz, Peter A.; Van Ginhoven, Renee M.; Edwards, Arthur H.

Using the local moment counter charge (LMCC) method to accurately represent the asymptotic electrostatic boundary conditions within density functional theory supercell calculations, we present a comprehensive analysis of the atomic structure and energy levels of point defects in cubic silicon carbide (3C-SiC). Finding that the classical long-range dielectric screening outside the supercell induced by a charged defect is a significant contributor to the total energy. we describe and validate a modified Jost screening model to evaluate this polarization energy. This leads to bulk-converged defect levels in finite size supercells. With the LMCC boundary conditions and a standard Perdew-Burke-Ernzerhof (PBE) exchange correlation functional, the computed defect level spectrum exhibits no band gap problem: the range of defect levels spans ∼2.4eV, an effective defect band gap that agrees with the experimental band gap. Comparing with previous literature, our LMCC-PBE defect results are in consistent agreement with the hybrid-exchange functional results of Oda et al. [J. Chem. Phys. 139, 124707 (2013)JCPSA60021-960610.1063/1.4821937] rather than their PBE results. The difference with their PBE results is attributed to their use of a conventional jellium approximation rather than the more rigorous LMCC approach for handling charged supercell boundary conditions. The difference between standard dft and hybrid functional results for defect levels lies not in a band gap problem but rather in solving a boundary condition problem. The LMCC-PBE entirely mitigates the effect of the band gap problem on defect levels. The more computationally economical PBE enables a systematic exploration of 3C-SiC defects, where, most notably, we find that the silicon vacancy undergoes Jahn-Teller-induced distortions from the previously assumed Td symmetry, and that the divacancy, like the silicon vacancy, exhibits a site-shift bistability in p-type conditions.