Publications

Results 4551–4575 of 9,998

Search results

Jump to search filters

Evaluation of the accuracy of an offline seasonally-varying matrix transport model for simulating ideal age

Ocean Modelling

Bradley, Andrew M.; Bardin, Ann; Primeau, Francois; Lindsay, Keith

Newton–Krylov solvers for ocean tracers have the potential to greatly decrease the computational costs of spinning up deep-ocean tracers, which can take several thousand model years to reach equilibrium with surface processes. One version of the algorithm uses offline tracer transport matrices to simulate an annual cycle of tracer concentrations and applies Newton's method to find concentrations that are periodic in time. Here we present the impact of time-averaging the transport matrices on the equilibrium values of an ideal-age tracer. We compared annually-averaged, monthly-averaged, and 5-day-averaged transport matrices to an online simulation using the ocean component of the Community Earth System Model (CESM) with a nominal horizontal resolution of 1° × 1° and 60 vertical levels. We found that increasing the time resolution of the offline transport model reduced a low age bias from 12% for the annually-averaged transport matrices, to 4% for the monthly-averaged transport matrices, and to less than 2% for the transport matrices constructed from 5-day averages. The largest differences were in areas with strong seasonal changes in the circulation, such as the Northern Indian Ocean. For many applications the relatively small bias obtained using the offline model makes the offline approach attractive because it uses significantly less computer resources and is simpler to set up and run.

More Details

XVis: Visualization for the Extreme-Scale Scientific-Computation Ecosystem (Year-end report FY16 Q4)

Moreland, Kenneth D.; Sewell, Christopher; Childs, Hank; Ma, Kwan-Liu; Geveci, Berk; Pugmire, David

The XVis project brings together the key elements of research to enable scientific discovery at extreme scale. Scientific computing will no longer be purely about how fast computations can be performed. Energy constraints, processor changes, and I/O limitations necessitate significant changes in both the software applications used in scientific computation and the ways in which scientists use them. Components for modeling, simulation, analysis, and visualization must work together in a computational ecosystem, rather than working independently as they have in the past. This project provides the necessary research and infrastructure for scientific discovery in this new computational ecosystem by addressing four interlocking challenges: emerging processor technology, in situ integration, usability, and proxy analysis.

More Details

The Aeras Next Generation Global Atmosphere Model

Bosler, Peter A.; Bova, S.W.; Demeshko, Irina P.; Fike, Jeffrey A.; Guba, Oksana G.; Overfelt, James R.; Roesler, Erika L.; Salinger, Andrew G.; Smith, Thomas M.; Kalashnikova, Irina; Watkins, Jerry E.

The Next Generation Global Atmosphere Model LDRD project developed a suite of atmosphere models: a shallow water model, an x-z hydrostatic model, and a 3D hydrostatic model, by using Albany, a finite element code. Albany provides access to a large suite of leading-edge Sandia high-performance computing technologies enabled by Trilinos, Dakota, and Sierra. The next-generation capabilities most relevant to a global atmosphere model are performance portability and embedded uncertainty quantification (UQ). Performance portability is the capability for a single code base to run efficiently on diverse set of advanced computing architectures, such as multi-core threading or GPUs. Embedded UQ refers to simulation algorithms that have been modified to aid in the quantifying of uncertainties. In our case, this means running multiple samples for an ensemble concurrently, and reaping certain performance benefits. We demonstrate the effectiveness of these approaches here as a prelude to introducing them into ACME.

More Details

Hierarchical Task-Data Parallelism using Kokkos and Qthreads

Edwards, Harold C.; Olivier, Stephen L.; Berry, Jonathan W.; Mackey, Greg; Rajamanickam, Sivasankaran R.; Wolf, Michael W.; Kim, Kyungjoo K.; Stelle, George

This report describes a new capability for hierarchical task-data parallelism using Sandia's Kokkos and Qthreads, and evaluation of this capability with sparse matrix Cholesky factorization and social network triangle enumeration mini-applications. Hierarchical task-data parallelism consists of a collection of tasks with executes-after dependences where each task contains data parallel operations performed on a team of hardware threads. The collection of tasks and dependences form a directed acyclic graph of tasks - a task DAG. Major challenges of this research and development effort include: portability and performance across multicore CPU; manycore Intel Xeon Phi, and NVIDIA GPU architectures; scalability with respect to hardware concurrency and size of the task DAG; and usability of the application programmer interface (API).

More Details

Dynamic Multi-Sensor Multi-Mission Optimal Planning Tool

Valicka, Christopher G.; Rowe, Stephen R.; Zou, Simon Z.; Mitchell, Scott A.; Irelan, William R.; Pollard, Eric L.; Garcia, Deanna G.; Hackebeil, Gabriel A.; Staid, Andrea S.; Laros, James H.; Watson, Jean-Paul W.; Hart, William E.; Rathinam, Sivakumar; Ntaimo, Lewis

Remote sensing systems have firmly established a role in providing immense value to commercial industry, scientific exploration, and national security. Continued maturation of sensing technology has reduced the cost of deploying highly-capable sensors while at the same time increased reliance on the information these sensors can provide. The demand for time on these sensors is unlikely to diminish. Coordination of next-generation sensor systems, larger constellations of satellites, unmanned aerial vehicles, ground telescopes, etc. is prohibitively complex for existing heuristics-based scheduling techniques. The project was a two-year collaboration spanning multiple Sandia centers and included a partnership with Texas A&M University. We have developed algorithms and software for collection scheduling, remote sensor field-of-view pointing models, and bandwidth-constrained prioritization of sensor data. Our approach followed best practices from the operations research and computational geometry communities. These models provide several advantages over state of the art techniques. In particular, our approach is more flexible compared to heuristics that tightly couple models and solution techniques. First, our mixed-integer linear models afford a rigorous analysis so that sensor planners can quantitatively describe a schedule relative to the best possible. Optimal or near-optimal schedules can be produced with commercial solvers in operational run-times. These models can be modified and extended to incorporate different scheduling and resource constraints and objective function definitions. Further, we have extended these models to proactively schedule sensors under weather and ad hoc collection uncertainty. This approach stands in contrast to existing deterministic schedulers which assume a single future weather or ad hoc collection scenario. The field-of-view pointing algorithm produces a mosaic with the fewest number of images required to fully cover a region of interest. The bandwidth-constrained algorithms find the highest priority information that can be transmitted. All of these are based on mixed-integer linear programs so that, in the future, collection scheduling, field-of-view, and bandwidth prioritization can be combined into a single problem. Experiments conducted using the developed models, commercial solvers, and benchmark datasets have demonstrated that proactively scheduling against uncertainty regularly and significantly outperforms deterministic schedulers.

More Details
Results 4551–4575 of 9,998
Results 4551–4575 of 9,998