Publications

Results 76–100 of 188

Search results

Jump to search filters

Thermal hydraulic simulations, error estimation and parameter sensitivity studies in Drekar::CFD

Shadid, John N.; Pawlowski, Roger P.; Cyr, Eric C.; Wildey, Timothy M.

This report describes work directed towards completion of the Thermal Hydraulics Methods (THM) CFD Level 3 Milestone THM.CFD.P7.05 for the Consortium for Advanced Simulation of Light Water Reactors (CASL) Nuclear Hub effort. The focus of this milestone was to demonstrate the thermal hydraulics and adjoint based error estimation and parameter sensitivity capabilities in the CFD code called Drekar::CFD. This milestone builds upon the capabilities demonstrated in three earlier milestones; THM.CFD.P4.02 [12], completed March, 31, 2012, THM.CFD.P5.01 [15] completed June 30, 2012 and THM.CFD.P5.01 [11] completed on October 31, 2012.

More Details

Xyce parallel electronic simulator users' guide, Version 6.0.1

Keiter, Eric R.; Warrender, Christina E.; Mei, Ting M.; Russo, Thomas V.; Schiek, Richard S.; Thornquist, Heidi K.; Verley, Jason V.; Coffey, Todd S.; Pawlowski, Roger P.

This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). This includes support for most popular parallel and serial computers. A differential-algebraic-equation (DAE) formulation, which better isolates the device model package from solver algorithms. This allows one to develop new types of analysis without requiring the implementation of analysis-specific device models. Device models that are specifically tailored to meet Sandias needs, including some radiationaware devices (for Sandia users only). Object-oriented code design and implementation using modern coding practices. Xyce is a parallel code in the most general sense of the phrase a message passing parallel implementation which allows it to run efficiently a wide range of computing platforms. These include serial, shared-memory and distributed-memory parallel platforms. Attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows.

More Details

Xyce parallel electronic simulator reference guide, Version 6.0.1

Keiter, Eric R.; Mei, Ting M.; Russo, Thomas V.; Pawlowski, Roger P.; Schiek, Richard S.; Coffey, Todd S.; Thornquist, Heidi K.; Verley, Jason V.; Warrender, Christina E.

This document is a reference guide to the Xyce Parallel Electronic Simulator, and is a companion document to the Xyce Users Guide [1] . The focus of this document is (to the extent possible) exhaustively list device parameters, solver options, parser options, and other usage details of Xyce. This document is not intended to be a tutorial. Users who are new to circuit simulation are better served by the Xyce Users Guide [1] .

More Details

Xyce parallel electronic simulator users guide, version 6.0

Russo, Thomas V.; Mei, Ting M.; Keiter, Eric R.; Schiek, Richard S.; Thornquist, Heidi K.; Verley, Jason V.; Coffey, Todd S.; Pawlowski, Roger P.; Warrender, Christina E.

This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). This includes support for most popular parallel and serial computers. A differential-algebraic-equation (DAE) formulation, which better isolates the device model package from solver algorithms. This allows one to develop new types of analysis without requiring the implementation of analysis-specific device models. Device models that are specifically tailored to meet Sandias needs, including some radiationaware devices (for Sandia users only). Object-oriented code design and implementation using modern coding practices. Xyce is a parallel code in the most general sense of the phrase a message passing parallel implementation which allows it to run efficiently a wide range of computing platforms. These include serial, shared-memory and distributed-memory parallel platforms. Attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows.

More Details

Xyce parallel electronic simulator reference guide, version 6.0

Keiter, Eric R.; Mei, Ting M.; Russo, Thomas V.; Pawlowski, Roger P.; Schiek, Richard S.; Coffey, Todd S.; Thornquist, Heidi K.; Verley, Jason V.; Warrender, Christina E.

This document is a reference guide to the Xyce Parallel Electronic Simulator, and is a companion document to the Xyce Users Guide [1] . The focus of this document is (to the extent possible) exhaustively list device parameters, solver options, parser options, and other usage details of Xyce. This document is not intended to be a tutorial. Users who are new to circuit simulation are better served by the Xyce Users Guide [1] .

More Details

A comparison of adjoint and data-centric verification techniques

Cyr, Eric C.; Shadid, John N.; Smith, Thomas M.; Pawlowski, Roger P.

This document summarizes the results from a level 3 milestone study within the CASL VUQ effort. We compare the adjoint-based a posteriori error estimation approach with a recent variant of a data-centric verification technique. We provide a brief overview of each technique and then we discuss their relative advantages and disadvantages. We use Drekar::CFD to produce numerical results for steady-state Navier Stokes and SARANS approximations. 3

More Details
Results 76–100 of 188
Results 76–100 of 188