Publications

9 Results

Search results

Jump to search filters

Grandmaster: Interactive text-based analytics of social media [PowerPoint]

Fabian, Nathan D.; Davis, Warren L.; Raybourn, Elaine M.; Lakkaraju, Kiran L.; Whetzel, Jonathan H.

People use social media resources like Twitter, Facebook, forums etc. to share and discuss various activities or topics. By aggregating topic trends across many individuals using these services, we seek to construct a richer profile of a person’s activities and interests as well as provide a broader context of those activities. This profile may then be used in a variety of ways to understand groups as a collection of interests and affinities and an individual’s participation in those groups. Our approach considers that much of these data will be unstructured, free-form text. By analyzing free-form text directly, we may be able to gain an implicit grouping of individuals with shared interests based on shared conversation, and not on explicit social software linking them. In this paper, we discuss a proof-of-concept application called Grandmaster built to pull short sections of text, a person’s comments or Twitter posts, together by analysis and visualization to allow a gestalt understanding of the full collection of all individuals: how groups are similar and how they differ, based on their text inputs.

More Details

Grandmaster: Interactive text-based analytics of social media

Fabian, Nathan D.; Davis, Warren L.; Raybourn, Elaine M.; Lakkaraju, Kiran L.; Whetzel, Jonathan H.

People use social media resources like Twitter, Facebook, forums etc. to share and discuss various activities or topics. By aggregating topic trends across many individuals using these services, we seek to construct a richer profile of a person’s activities and interests as well as provide a broader context of those activities. This profile may then be used in a variety of ways to understand groups as a collection of interests and affinities and an individual’s participation in those groups. Our approach considers that much of these data will be unstructured, free-form text. By analyzing free-form text directly, we may be able to gain an implicit grouping of individuals with shared interests based on shared conversation, and not on explicit social software linking them. In this paper, we discuss a proof-of-concept application called Grandmaster built to pull short sections of text, a person’s comments or Twitter posts, together by analysis and visualization to allow a gestalt understanding of the full collection of all individuals: how groups are similar and how they differ, based on their text inputs.

More Details

Enabling immersive simulation

Abbott, Robert G.; Basilico, Justin D.; Glickman, Matthew R.; Hart, Derek H.; Whetzel, Jonathan H.

The object of the 'Enabling Immersive Simulation for Complex Systems Analysis and Training' LDRD has been to research, design, and engineer a capability to develop simulations which (1) provide a rich, immersive interface for participation by real humans (exploiting existing high-performance game-engine technology wherever possible), and (2) can leverage Sandia's substantial investment in high-fidelity physical and cognitive models implemented in the Umbra simulation framework. We report here on these efforts. First, we describe the integration of Sandia's Umbra modular simulation framework with the open-source Delta3D game engine. Next, we report on Umbra's integration with Sandia's Cognitive Foundry, specifically to provide for learning behaviors for 'virtual teammates' directly from observed human behavior. Finally, we describe the integration of Delta3D with the ABL behavior engine, and report on research into establishing the theoretical framework that will be required to make use of tools like ABL to scale up to increasingly rich and realistic virtual characters.

More Details

Preparing for the aftermath: Using emotional agents in game-based training for disaster response

2008 IEEE Symposium on Computational Intelligence and Games, CIG 2008

Djordjevich Reyna, Donna D.; Xavier, Patrick G.; Bernard, Michael L.; Whetzel, Jonathan H.; Glickman, Matthew R.; Verzi, Stephen J.

Ground Truth, a training game developed by Sandia National Laboratories in partnership with the University of Southern California GamePipe Lab, puts a player in the role of an Incident Commander working with teammate agents to respond to urban threats. These agents simulate certain emotions that a responder may feel during this high-stress situation. We construct psychology-plausible models compliant with the Sandia Human Embodiment and Representation Cognitive Architecture (SHERCA) that are run on the Sandia Cognitive Runtime Engine with Active Memory (SCREAM) software. SCREAM's computational representations for modeling human decision-making combine aspects of ANNs and fuzzy logic networks. This paper gives an overview of Ground Truth and discusses the adaptation of the SHERCA and SCREAM into the game. We include a semiformal descriptionof SCREAM. ©2008 IEEE.

More Details
9 Results
9 Results