Publications / Conference Poster

Grandmaster: Interactive text-based analytics of social media

Fabian, Nathan D.; Davis, Warren L.; Raybourn, Elaine M.; Lakkaraju, Kiran L.; Whetzel, Jonathan H.

People use social media resources like Twitter, Facebook, forums etc. to share and discuss various activities or topics. By aggregating topic trends across many individuals using these services, we seek to construct a richer profile of a person’s activities and interests as well as provide a broader context of those activities. This profile may then be used in a variety of ways to understand groups as a collection of interests and affinities and an individual’s participation in those groups. Our approach considers that much of these data will be unstructured, free-form text. By analyzing free-form text directly, we may be able to gain an implicit grouping of individuals with shared interests based on shared conversation, and not on explicit social software linking them. In this paper, we discuss a proof-of-concept application called Grandmaster built to pull short sections of text, a person’s comments or Twitter posts, together by analysis and visualization to allow a gestalt understanding of the full collection of all individuals: how groups are similar and how they differ, based on their text inputs.