Publications

Results 1–25 of 183

Search results

Jump to search filters

Poromechanical cohesive interface element with combined Mode I-II cohesive zone elastoplasticity for simulating fracture in fluid-saturated porous media

Computers and Structures

Rimsza, Jessica; Jones, Reese E.; Regueiro, Richard A.; Jadaan, Dafer K.

A combined Mode I-II cohesive zone (CZ) elasto-plastic constitutive model, and a two-dimensional (2D) cohesive interface element (CIE) are formulated and implemented at small strain within an ABAQUS User Element (UEL) for simulating 2D crack nucleation and propagation in fluid-saturated porous media. The CZ model mitigates problems of convergence for the global Newton-Raphson solver within ABAQUS, which when combined with a viscous stabilization procedure allows for simulation of post-peak response under load control for coupled poromechanical finite element analysis, such as concrete gravity dam stability analysis. Verification examples are presented, along with a more complex ambient limestone-concrete wedge fracture experiment, water-pressurized concrete wedge experiment, and concrete gravity dam stability analyses. A calibration procedure for estimating the CZ parameters is demonstrated with the limestone-concrete wedge fracture process. For the water-pressurized concrete wedge fracture experiment it is shown that the inherent time-dependence of the poromechanical CIE analysis provides a good match with experimental force versus displacement results at various crack mouth opening rates, yet misses the pore water pressure evolution ahead of the crack tip propagation. This is likely a result of the concrete being partially-saturated in the experiment, whereas the finite element analysis assumes fully water saturated concrete. For the concrete gravity dam analysis, it is shown that base crack opening and associated water uplift pressure leads to a reduced Factor of Safety, which is confirmed by separate analytical calculations.

More Details

Role of water in fracture of modified silicate glasses

Journal of the American Ceramic Society

Rimsza, Jessica; Maksimov, Vasilii; Welch, Rebecca S.; Potter, Arron R.; Mauro, John C.; Wilkinson, Collin J.

Decarbonizing the glass industry requires alternative melting technology, as current industrial melting practices rely heavily on fossil fuels. Hydrogen has been proposed as an alternative to carbon-based fuels, but the ensuing consequences on the mechanical behavior of the glass remain to be clarified. A critical distinction between hydrogen and carbon-based fuels is the increased generation of water during combustion, which raises the equilibrium solubility of water in the melt and alters the behavior of the resulting glass. A series of five silicate glasses with 80% silica and variable [Na2O]/([H2O] + [Na2O]) ratios were simulated using molecular dynamics to elucidate the effects of water on fracture. Several fracture toughness calculation methods were used in combination with atomistic fracture simulations to examine the effects of hydroxyl content on fracture behavior. This study reveals that the crack propagation pathway is a key metric to understanding fracture toughness. Notably, the fracture propagation path favors hydrogen sites over sodium sites, offering a possible explanation of the experimentally observed effects of water on fracture properties.

More Details

Enhanced pozzolanic reactivity in hydrogen-form zeolites as supplementary cementitious materials

Cement and Concrete Composites

Rimsza, Jessica; Rademacher, David X.; Nenoff, Tina M.; Tuinukuafe, Atolo A.

Pozzolans rich in silica and alumina react with lime to form cementing compounds and are incorporated into portland cement as supplementary cementitious materials (SCMs). However, pozzolanic reactions progress slower than portland cement hydration, limiting their use in modern construction due to insufficient early-age strength. Hence, alternative SCMs that enable faster pozzolanic reactions are necessary including synthetic zeolites, which have high surface areas and compositional purity that indicate the possibility of rapid pozzolanic reactivity. Synthetic zeolites with varying cation composition (Na-zeolite, H-zeolite), SiO2/Al2O3 ratio, and framework type were evaluated for pozzolanic reactivity via Ca(OH)2 consumption using ion exchange and in-situ X-ray diffraction experiments. Na-zeolites exhibited limited exchange reactions with KOH and Ca(OH)2 due to the occupancy of acid sites by Na+ and hydroxyl groups. Meanwhile, H-zeolites readily adsorbed K+ and Ca2+ from a hydroxide solution by exchanging cations with H+ at Brønsted acid sites or cation adsorption at vacant acid sites. By adsorbing cations, the H-zeolite reduced the pH and increased Ca2+ solubility to promote pozzolanic reactions in a system where Ca(OH)2 dissolution/diffusion was a rate limiting factor. High H-zeolite reactivity resulted in 0.8 g of Ca(OH)2 consumed per 1 g of zeolites after 16 h of reaction versus 0.4 g of Ca(OH)2 consumed per 1 g of Na-zeolite. The H-zeolite modulated the pore fluid alkalinity and created a low-density amorphous silicate phase via mechanisms analogous to two-step C-S-H nucleation experiments. Controlling these reaction mechanisms is key to developing next generation pozzolanic cementitious systems with comparable hydration rates to portland cement.

More Details

DRIFT: Diffusivity Regulation of Isotopes by nanoconFinementT

Rimsza, Jessica; Fritzsching, Keith; Leverant, Calen J.; Gruenwald, Hannah K.; Klavetter, Kyle C.

Spontaneous isotope fractionation has been reported under nanoconfinement conditions in naturally occurring systems, but the origin of this phenomena is currently unknown. Two existing hypotheses have been proposed, one based on changes in the solvation environment of the isotopes that reduces the non-mass dependent hydrodynamics contribution to diffusion. The other is that isotopes have mass-dependent surface adsorption, varying their total diffusion through nanoconfined channels. To investigate these hypotheses, benchtop experiments, nuclear magnetic resonance (NMR) spectroscopy, and molecule scale modeling were applied. Classical molecular dynamics simulations identified that the Na+ and Cl- hydration shells across the three different salt solutions (22Na35Cl, 23Na35Cl, 24Na35Cl) did not vary as a function of the Na+ isotope, but that there was a significant pore size effect, with larger hydration shells at larger pore sizes. Additionally, while total adsorption times did not vary as a function of the Na+ isotope or pore size, the free ion concentration, or those adsorbed on the surface for <5% of the simulation time did exhibit isotope dependence. Experimentally, challenges occurred developing a repeatable experiment, but NMR characterization of water diffusion rates through ordered alumina membranes was able to identify the existence of two distinct water environments associated with water inside and outside the pore. Further NMR studies could be used to confirm variation in hydration shells and diffusion rates of dissolved ions in water. Ultimately, mass-dependence adsorption is a primary driver of variations in isotope diffusion rates, rather than variation in hydration shells that occur under nanoconfinement.

More Details

Impact of Vertex Functionalization on Flexibility of Porous Organic Cages

ACS Omega

Rimsza, Jessica; Duwal, Sakun; Root, Harrison

Efficient carbon capture requires engineered porous systems that selectively capture CO2 and have low energy regeneration pathways. Porous liquids (PLs), solvent-based systems containing permanent porosity through the incorporation of a porous host, increase the CO2 adsorption capacity. A proposed mechanism of PL regeneration is the application of isostatic pressure in which the dissolved nanoporous host is compressed to alter the stability of gases in the internal pore. This regeneration mechanism relies on the flexibility of the porous host, which can be evaluated through molecular simulations. Here, the flexibility of porous organic cages (POCs) as representative porous hosts was evaluated, during which pore windows decreased by 10-40% at 6 GPa. POCs with sterically smaller functional groups, such as the 1,2-ethane in the CC1 POC resulted in greater imine cage flexibility relative to those with sterically larger functional groups, such as the cyclohexane in the CC3 POC that protected the imine cage from the application of pressure. Structural changes in the POC also caused CO2 adsorption to be thermodynamically unfavorable beginning at ∼2.2 GPa in the CC1 POC, ∼1.1 GPa in the CC3 POC, and ∼1.0 GPa in the CC13 POC, indicating that the CO2 would be expelled from the POC at or above these pressures. Energy barriers for CO2 desorption from inside the POC varied based on the geometry of the pore window and all the POCs had at least one pore window with a sufficiently low energy barrier to allow for CO2 desorption under ambient temperatures. The results identified that flexibility of the CC1, CC3, or CC13 POCs under compression can result in the expulsion of captured gas molecules.

More Details

Critical role of solvation on CC13 porous organic cages for design of porous liquids

Journal of Molecular Liquids

Rimsza, Jessica; Nenoff, Tina M.

Efficient carbon capture requires the design of new materials with high CO2 selectivity and gas adsorption capacity that can be incorporated into existing industrial processes. Porous liquids (PLs) are promising candidate materials that consist of a nanoporous host and a solvent forming a liquid with permanent porosity based on exclusion of the solvent from the interior of the nanoporous host. Stable PLs are based on solvent-nanoporous host interactions, which can be evaluated through molecular simulations. Here, time- and temperature-dependent density functional theory simulations were performed between four solvents, 2-bromophenol, 4-methylphenol, 2,4-dimethylphenol, and cyclohexanone and the CC13 porous organic cage (POC) as a prototypical PL composition. Overall, minimal reactions occurred in the PL including no changes in the POC structure. Additionally, POC-solvent coordination occurred through interactions of neighboring functional groups such as methyl/bromide and hydroxyl on the solvent molecules with the POC surface. Therefore, the location rather than the number of functional groups on the solvent molecule controls the POC-solvent interactions. Additionally, the POC pore window contracted or expanded up to 8% during solvation, which correlates with the experimental solubility and static solvent-POC binding, where solvents that caused less contraction of the POC pore window increased POC solubility. These results allow for the design of optimized POC-based PL compositions based on solvent-nanoporous host binding and variation in the pore window during solvation.

More Details

Natural carbonation of portland cement with synthetic zeolite Y as a supplementary cementitious material

Construction and Building Materials

Rimsza, Jessica; Mills, Melissa M.; Walder, Brennan J.; Fritzsching, Keith; Jove-Colon, Carlos F.; Bullard, Jeffrey W.; Lapeyre, Jonathan; Mcenroe, Theresa; Matteo, Edward N.; Tuinukuafe, Atolo A.

Risks associated with carbonation are a key limitation to greater replacement levels of ordinary portland cement (OPC) by supplementary cementitious materials (SCMs). The addition of pozzolanic SCMs in OPC alters the hydrate assemblage by forming phases like calcium-(alumina)-silicate-hydrate (C-(A)-S-H). The objective of the present study was to elucidate how such changes in hydrate assemblage influence the chemical mechanisms of carbonation in a realistic OPC system. Here, we show that synthetic zeolite Y (faujasite) is a highly reactive pozzolan in OPC that reduces the calcium content of hydration products via prompt consumption of calcium hydroxide from the evolving phase assemblage prior to CO2 exposure. Suppression of portlandite at moderate to high zeolite Y content led to a more damaging mechanism of carbonation by disrupting the formation of a passivating carbonate layer. Without this layer, carbonation depth and CO2 uptake are increased. Binders containing 12–18% zeolite Y by volume consumed all the calcium hydroxide from OPC during hydration and reduced the Ca/(Si+Al) ratio of the amorphous products to near 0.67. In these cases, higher carbonation depths were observed after exposure to ambient air with decalcification of C-(A)-S-H as the main source of CO2 buffering. Binders with either 0% or 4% zeolite Y contained calcium hydroxide in the hydrated microstructure, had higher Ca/(Si+Al) ratios, and formed a calcite-rich passivation layer that halted deep carbonation. Although the carbonated layer in the samples with 12% and 18% zeolite Y contained 70% and 76% less calcite than the OPC respectively, their higher carbonation depths resulted in total CO2 uptakes that were 12x greater than the OPC sample. Passivation layer formation in samples with calcium hydroxide explains this finding and was further supported by thermodynamic modeling. High Si/Al zeolite additives to OPC should be balanced with the calcium content for optimal carbonation resistance.

More Details

Design Principles Guiding Solvent Size Selection in ZIF-Based Type 3 Porous Liquids for Permanent Porosity

ACS Materials Au

Hurlock, Matthew; Christian, Matthew S.; Rimsza, Jessica; Nenoff, Tina M.

Porous liquids (PLs), which are solvent-based systems that contain permanent porosity due to the incorporation of a solid porous host, are of significant interest for the capture of greenhouse gases, including CO2. Type 3 PLs formed by using metal-organic frameworks (MOFs) as the nanoporous host provide a high degree of chemical turnability for gas capture. However, pore aperture fluctuation, such as gate-opening in zeolitic imidazole framework (ZIF) MOFs, complicates the ability to keep the MOF pores available for gas adsorption. Therefore, an understanding of the solvent molecular size required to ensure exclusion from MOFs in ZIF-based Type 3 PLs is needed. Through a combined computational and experimental approach, the solvent-pore accessibility of exemplar MOF ZIF-8 was examined. Density functional theory (DFT) calculations identified that the lowest-energy solvent-ZIF interaction occurred at the pore aperture. Experimental density measurements of ZIF-8 dispersed in various-sized solvents showed that ZIF-8 adsorbed solvent molecules up to 2 Å larger than the crystallographic pore aperture. Density analysis of ZIF dispersions was further applied to a series of possible ZIF-based PLs, including ZIF-67, −69, −71(RHO), and −71(SOD), to examine the structure-property relationships governing solvent exclusion, which identified eight new ZIF-based Type 3 PL compositions. Solvent exclusion was driven by pore aperture expansion across all ZIFs, and the degree of expansion, as well as water exclusion, was influenced by ligand functionalization. Using these results, a design principle was formulated to guide the formation of future ZIF-based Type 3 PLs that ensures solvent-free pores and availability for gas adsorption.

More Details

Inelastic relaxation processes in amorphous sodium silicates

Journal of the American Ceramic Society

Rimsza, Jessica; Jones, Reese E.

During fracture amorphous oxides exhibit irreversible processes, including inelastic and nonrecoverable relaxation effects in the process zone surrounding the crack tip. Here, classical molecular dynamics simulations were used with a reactive forcefield to evaluate inelastic relaxation processes in five amorphous sodium silicate compositions. Overall, the 20% Na2O-SiO2(NS20) composition exhibited the most inelastic relaxation, followed by the 15% Na2O-SiO2(NS15) composition, the 25% Na2O-SiO2(NS25) composition, and finally the 10% (NS10) and 30% (NS30) Na2O-SiO2 compositions. Coordination analysis of the Na+ ions identified that during inelastic relaxation the Na+ ions were increasingly coordinated by nonbridging oxygens (NBOs) for the NS10 and NS15 compositions, which was supported by radial analysis of the O-Na-O bond angles surrounding the crack tip. Across the sodium silicate compositional range, two different inelastic relaxation mechanism were identified based on the amount of bridging oxygens (BOs) and NBOs in the Na+ ion coordination shell. At lower (NS10) and higher (NS30) sodium compositions, the entire structured relaxed toward the crack tip. In contrast at intermediate sodium concentrations (NS20) the Na+ ion migrates toward the crack tip separately from the network structure. By developing a fundamental understanding of how modified silica systems respond to static stress fields, we will be able to predict how varying amorphous silicate systems exhibit slow crack growth.

More Details

Molecular Dynamics Simulations of Calcite Fracture in Water

Journal of Physical Chemistry C

Wang, Qiaoyi; Rimsza, Jessica; Harvey, Jacob A.; Newell, Pania; Grunwald, Michael; Ilgen, Anastasia G.

Calcite (CaCO3) is one of the most common minerals in geologic and engineered systems. It is often in contact with aqueous solutions, causing chemically assisted fracture that is critical to understanding the stability of subsurface systems and manmade structures. Calcite fracture was evaluated with reactive molecular dynamics simulations, including the impacts of crack tip geometry (notch), the presence of water, and surface hydroxyl groups. Chemo-mechanical weakening was assessed by comparing the loads where fracture began to propagate. Our analyses show that in the presence of a notch, the load at which crack growth begins is lower, compared to the effect of water or surface hydroxyls. Additionally, the breaking of two adjacent Ca-O bonds is the kinetic limitation for crack initiation, since transiently broken bonds can reform, not resulting in crack growth. In aqueous environments, fresh (not hydroxylated) calcite surfaces exhibited water strengthening. Manual addition of H+ and/or OH- species on the (104) calcite surface resulted in chemo-mechanical weakening of calcite by 9%. Achieving full hydroxylation of the calcite surface was thermodynamically and kinetically limited, with only 0.17-0.01 OH/nm2 surface hydroxylation observed on the (104) surface at the end of the simulations. The limited reactivity of pure water with the calcite surface restricts the chemo-mechanical effects and suggests that reactions between physiosorbed water and localized structural defects may be dominating the chemo-mechanical process in the studies where water weakening has been reported.

More Details

CO2 adsorption mechanisms at the ZIF-8 interface in a Type 3 porous liquid

Journal of Molecular Liquids

Rimsza, Jessica; Hurlock, Matthew; Nenoff, Tina M.; Christian, Matthew S.

Porous liquids (PLs) are an attractive material for gas separation and carbon sequestration due to their permanent internal porosity and high adsorption capacity. PLs that contain zeolitic imidazole frameworks (ZIFs), such as ZIF-8, form PLs through exclusion of aqueous solvents from the framework pore due to its hydrophobicity. The gas adsorption sites in ZIF-8 based PLs are historically unknown; gas molecules could be captured in the ZIF-8 pore or adsorb at the ZIF-8 interface. To address this question, ab initio molecular dynamics was used to predict CO2 binding sites in a PL composed of a ZIF-8 particle solvated in a water, ethylene glycol, and 2-methylimidazole solvent system. Further, the results show that CO2 energetically prefers to reside inside the ZIF-8 pore aperture due to strong van der Waals interactions with the terminal imidazoles. However, the CO2 binding site can be blocked by larger solvent molecules that have greater adsorption interactions. CO2 molecules were unable to diffuse into the ZIF-8 pore, with CO2 adsorption occurring due to binding with the ZIF-8 surface. Therefore, future design of ZIF-based PLs for enhanced CO2 adsorption should be based on the strength of gas binding at the solvated particle surface.

More Details

Modeling single-molecule stretching experiments using statistical thermodynamics

Physical Review E

Buche, Michael R.; Rimsza, Jessica

Single-molecule stretching experiments are widely utilized within the fields of physics and chemistry to characterize the mechanics of individual bonds or molecules, as well as chemical reactions. Analytic relations describing these experiments are valuable, and these relations can be obtained through the statistical thermodynamics of idealized model systems representing the experiments. Since the specific thermodynamic ensembles manifested by the experiments affect the outcome, primarily for small molecules, the stretching device must be included in the idealized model system. Though the model for the stretched molecule might be exactly solvable, including the device in the model often prevents analytic solutions. In the limit of large or small device stiffness, the isometric or isotensional ensembles can provide effective approximations, but the device effects are missing. Here a dual set of asymptotically correct statistical thermodynamic theories are applied to develop accurate approximations for the full model system that includes both the molecule and the device. The asymptotic theories are first demonstrated to be accurate using the freely jointed chain model and then using molecular dynamics calculations of a single polyethylene chain.

More Details

Chemical controls on the propagation and healing of subcritical fractures

Ilgen, Anastasia G.; Buche, Michael R.; Choens II, Robert C.; Dahmen, Karin A.; Delrio, F.W.; Gruenwald, Michael; Grutzik, S.J.; Harvey, Jacob A.; Mook, William M.; Newell, Pania; Wilson, Jennifer E.; Rimsza, Jessica; Sickle, Jordan; Wang, Qiaoyi; Warner, Derek H.

Human activities involving subsurface reservoirs—resource extraction, carbon and nuclear waste storage—alter thermal, mechanical, and chemical steady-state conditions in these systems. Because these systems exist at lithostatic pressures, even minor chemical changes can cause chemically assisted deformation. Therefore, understanding how chemical effects control geomechanical properties is critical to optimizing engineering activities. The grand challenge in predicting the effect of chemical processes on mechanical properties lays in the fact that these phenomena take place at molecular scales, while they manifest all the way to reservoir scales. To address this fundamental challenge, we investigated chemical effects on deformation in model and real systems spanning molecular- to centimeter scales. We used theory, experiment, molecular dynamics simulation, and statistical analysis to (1) identify the effect of simple reactions, such as hydrolysis, on molecular structures in interfacial regions of stressed geomaterials; (2) quantify chemical effects on the bulk mechanical properties, fracture and displacement for granular rocks and single crystals; (3) develop initial understanding of universal scaling for individual displacement events in layered geomaterials; and (4) develop analytic approximations for the single-chain mechanical response utilizing asymptotically correct statistical thermodynamic theory. Taken together, these findings advance the challenging field of chemo-mechanics.

More Details
Results 1–25 of 183
Results 1–25 of 183