Voltage and temperature distributions along the crucible were measured during VAR of 0.81 m diameter Ti-6Al-4V electrode into 0.91 m diameter ingot. These data were used to determine the current distribution along the crucible. Measurements were made for two furnace conditions, one with a bare crucible and the other with a painted crucible. The VAR furnace used for these measurements is of the non-coaxial type, i.e. current is fed directly into the bottom of the crucible through a stool (base plate) contact and exits the furnace through the electrode stinger. The data show that approximately 63% of the current is conducted directly between the ingot and electrode with the remaining conducted between the electrode and crucible wall. This partitioning does not appear to be sensitive to crucible coating. The crucible voltage data were successfully simulated using uniform current distributions for the current conduction zones, a value of 0.63 for the partitioning, and widths of 0.30 and 0.15 m for the ingot/crucible wall and plasma conduction zones, respectively. Successful simulation of the voltage data becomes increasingly difficult (or impossible) as one uses current partitioning values increasingly different from 0.63, indicating that the experimental value is consistent with theory. Current conducted between the ingot and crucible wall through the ingot/wall contact zone may vary during the process without affecting overall current partitioning. The same is true for current conducted through the ingot/stool and stool/crucible contact zones. There is some evidence that the ingot/stool current decreases with increasing ingot length for the case of the bare crucible. Equivalent circuit analysis shows that, under normal conditions, current partitioning is only sensitive to the ratio of the plasma resistance across the annulus to the plasma resistance across the electrode gap, thereby demonstrating the relationship between current partitioning and gap.
Our charter at Sandia National Laboratories is to develop technology to reduce the development cost of geothermal drilling. Due to their aggressive penetration rate performance, Polycrystalline Diamond Compact (PDC) bits are of particular interest for this application and they have recently been demonstrated to be capable of drilling hard-rock formations characteristic of geothermal reservoirs. Additionally, oil and gas operators are increasingly forced to extend their drilling targets to include these hard-rock formations as our fossil energy reserves dwindle. However, PDC bits are particularly susceptible to impact-type damage due to the onset of drilling vibrations that can cause bit failure. Bit vibration produces an undulated surface in the rock that in turn produces a time-variant force that feeds back into the vibration of the bit and drillstring. While there is considerable debate in the drilling community regarding the relative significance of the various types of vibrations, self-induced vibrations do occur and can be mathematically predicted if the drill bit, drillstring, and rock type are not correctly matched. One way to alleviate this problem is to insert a vibration absorber into the drillstring. Given the broad range of parameters contributing to bit vibrations, any damper installed in the drillstring should be controllable to give it more dynamic range. We have experimentally demonstrated that a controllable damper can introduce stability in PDC bits drilling hard rock typical of geothermal formations.
Proceedings of the Solar World Congress 2005: Bringing Water to the World, Including Proceedings of 34th ASES Annual Conference and Proceedings of 30th National Passive Solar Conference
Begay-Campbell, Sandra; Coots, Jennifer; Mar, Benjamin
Sandia National Laboratories (Sandia) has an active relationship with the Navajo Nation. Sandia has grown this relationship with through joint formation of strategic multiyear plans oriented toward the development of sustainable Native American renewable energy projects and associated business development. For the last decade, the Navajo Tribal Utility Authority (NTUA) has installed stand-alone photovoltaic (PV) systems on the Navajo Reservation to provide some of its most remote customers with electricity. Sandia and New Mexico State University - Southwest Technology Development Institute's technical assistance supports NTUA as a leader in rural solar electrification, assists NTUA's solar program coordinator to create a sustainable program and conveys NTUA's success in solar to others, including the Department of Energy (DOE). In partnership with DOE's Tribal Energy Program, summer interns' Jennifer Coots (MBA student) and Benjamin Mar (Electrical and Computer Engineering student) prepared case studies that summarize the rural utility's experience with solar electric power.
LMPC 2005 - Proceedings of the 2005 International Symposium on Liquid Metal Processing and Casting
Viswanathan, Srinath; Melgaard, David K.; Patel, Ashish D.; Evans, David G.
A numerical model of the ESR process was used to study the effect of the various process parameters on the resulting temperature profiles, flow field, and pool shapes. The computational domain included the slag and ingot, while the electrode, crucible, and cooling water were considered as external boundary conditions. The model considered heat transfer, fluid flow, solidification, and electromagnetic effects. The predicted pool profiles were compared with experimental results obtained over a range of processing parameters from an industrial-scale 718 alloy ingot. The shape of the melt pool was marked by dropping nickel balls down the annulus of the crucible during melting. Thermocouples placed in the electrode monitored the electrode and slag temperature as melting progressed. The cooling water temperature and flow rate were also monitored. The resulting ingots were sectioned and etched to reveal the ingot macrostructure and the shape of the melt pool. Comparisons of the predicted and experimentally measured pool profiles show excellent agreement. The effect of processing parameters, including the slag cap thickness, on the temperature distribution and flow field are discussed. The results of a sensitivity study of thermophysical properties of the slag are also discussed.
The structural characteristics of buttress thread mechanical joints are not well understood and are difficult to accurately model. As an initial step towards understanding the mechanics of the buttress thread, a 2D plane stress model was created. An experimental investigation was conducted to study the compliance, damping characteristics, and stress field in an axial test condition. The compliance and damping were determined experimentally from a steel cross section of a buttress thread. The stress field was visualized using photoelastic techniques. The mechanics study combined with the photoelastic study provided a set of validation data.
In this paper, we discuss the primary characteristics and pitfalls associated with the use of Bragg Gratings for distributed temperature sensing, with particular attention to time-division multiplexing (TDM). Two pitfalls are intrinsic to a serial array of such gratings that use TDM: spectral shadowing and crosstalk. Two others involve strain in the fiber that masquerades as temperature and that could affect other methods of interrogating the gratings, in addition to TDM.
LMPC 2005 - Proceedings of the 2005 International Symposium on Liquid Metal Processing and Casting
Minisandram, Ramesh S.; Arnold, Matthew J.; Williamson, Rodney L.
During VAR of a 5377 kg, 0.76 m diameter Ti-6Al-4V alloy electrode into 0.86 m diameter ingot, tantalum balls were dropped into the ingot pool to measure the centerline pool depth. The first was introduced at full power after 1134 kg of electrode had been melted. A second marker was dropped after 4288 kg of electrode had been consumed, also at full power but just prior to power cutback. The third, and final, ball was released at the end of the cutback with 286 kg of electrode remaining. An external solenoidal stirring field was applied to the ingot throughout the melting process, as is typical in such practices. The ingot was sectioned, the marker ball positions recorded, and the pool depths subsequently calculated. The first market was located only 4.5 cm from the bottom of the ingot, but was off-center by nearly 22 cm, indicating a relatively flat pool bottom. The other two balls were located 36.2 cm and 105.4 cm from the bottom, both approximately centered. Pool depths for the three conditions were calculated to be ∼41 cm, ∼131 cm and ∼99 cm. BAR, a 21/2 D, axisymmetric ingot code developed at Sandia National Laboratories, was used to generate pool shapes corresponding to these conditions. The code, which solves heat transfer, fluid flow and electromagnetic effects in a coupled fashion, was able to match the pool depths by adjusting the strength of the stirring field as a parameter, and predicted relatively thin sidewalls under full power melting, a prediction supported by crucible temperature and current distribution data also collected during the test. The applied stirring field was 60 gauss for this test. The effective field strength setting in BAR required to match the pool depths was 30 gauss. All other parameters in BAR were set identical to those required to match low stirring field (4 gauss), full power ingot pool depths measured and reported in an earlier study, except those requiring consistency with observed arc behavior in the two cases. Thus, it is concluded that the 21/2 D code can accurately match pool depths under high field strength stirring conditions once properly benchmarked.
ICEAA 2005 - 9th International Conference on Electromagnetics in Advanced Applications and EESC 2005 - 11th European Electromagnetic Structures Conference
Simulation results demonstrating transmission enhancement through a sub-wavelength aperature in an infinite plasmon array are presented. The results are obtained using EIGER and are considered preliminary before proceeding to the simulation of finite-plasmon arrays.
Grain boundary stiffness and mobility determine the kinetics of curvature driven grain growth. Here the stiffness and mobility are determined using a computational approach based on the analysis of fluctuations in the grain boundary position during molecular dynamics simulations. This work represents the first determination of grain boundary stiffness. The results indicate that the boundary stiffness for a given boundary plane has a strong dependence on the direction of the boundary distortion. The mobility deduced is in accord with previous computer simulation studies.
Engineering/Technology Management 2005: Safety Engineering and Risk Analysis, Technology and Society, Engineering Business Management, Health and Safety
Lloyd, George M.; Hasselman, Timothy; Paez, Thomas