What's New in NOX...Plus New Techniques for Solving Large-Scale Steady-State and Transient Stability Analysis Problems with LOCA
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Energy Conversion and Resources 2005
Tucson Electric Power Company (TEP) currently has nearly 5.0 MWdc of utility-scale grid-connected photovoltaic (PV) systems that have been installed in its service territory since 2000. Most of this installed PV capacity is in support of the Arizona Corporation Commission Environmental Portfolio Standard (EPS) goal that encourages TEP to generate 1.1% of its energy generation through renewable resources by 2007, with 60% of that amount from photovoltaics. The EPS program provides for multi-year, pay-as-you-go development of renewable energy, with kWhac energy production as a key program measurement. A total of 26 crystalline silicon collector systems, each rated at 135 kWdc, have been installed at the Springerville, AZ generating plant by TEP making this one of the largest PV plants in the world. These systems were installed in a standardized, cookie-cutter approach whereby each uses the same array field design, mounting hardware, electrical interconnection, and inverter unit. This approach has allowed TEP to achieve a total installed system cost of $5.40/Wdc and a TEP-calculated levelized energy cost of $0.10/kWhac for PV electrical generation. During this time, much has been learned regarding performance, cost, maintenance, installation and design. This paper presents an assessment of these topics and a perspective associated with this PV experience. Copyright © 2005 by ASME.
Abstract not provided.
When developing new hardware for a computer system, bus monitors are invaluable for testing compliance and troubleshooting problems. Bus monitors can be purchased for other common system busses such as the Peripheral Component Interconnect (PCI) bus and the Universal Serial Bus (USB). However, the project team did not find any commercial bus analyzers for the Low Pin Count (LPC) bus. This report will provide a short overview of the LPC interface. Page 3 of 11 This page intentionally left blank.Page 4 of 11
Abstract not provided.
Abstract not provided.
Basic research is needed to better understand the potential risk of dangerous biological agents that are unintentionally or intentionally introduced into a water distribution system. We report on our capabilities to conduct such studies and our preliminary investigations. In 2004, the Biofilms Laboratory was initiated for the purpose of conducting applied research related to biofilms with a focus on application, application testing and system-scale research. Capabilities within the laboratory are the ability to grow biofilms formed from known bacteria or biofilms from drinking water. Biofilms can be grown quickly in drip-flow reactors or under conditions more analogous to drinking-water distribution systems in annular reactors. Biofilms can be assessed through standard microbiological techniques (i .e, aerobic plate counts) or with various visualization techniques including epifluorescent and confocal laser scanning microscopy and confocal fluorescence hyperspectral imaging with multivariate analysis. We have demonstrated the ability to grow reproducible Pseudomonas fluorescens biofilms in the annular reactor with plate counts on the order of 10{sup 5} and 10{sup 6} CFU/cm{sup 2}. Stationary phase growth is typically reached 5 to 10 days after inoculation. We have also conducted a series of pathogen-introduction experiments, where we have observed that both polystyrene microspheres and Bacillus cereus (as a surrogate for B. anthracis) stay incorporated in the biofilms for the duration of our experiments, which lasted as long as 36 days. These results indicated that biofilms may act as a safe harbor for bio-pathogens in drinking water systems, making it difficult to decontaminate the systems.
Abstract not provided.
Proposed for publication in the Journal of Thermal Spray Technology.
Abstract not provided.
Abstract not provided.