Publications

Results 82076–82100 of 96,771

Search results

Jump to search filters

Continuous-Flow Detector for Rapid Pathogen Identification

Skulan, Andrew S.; Barrett, Louise B.; Singh, Anup K.

This report describes the continued development of a low-power, portable detector for the rapid identification of pathogens such as B. anthracis and smallpox. Based on our successful demonstration of the continuous filter/concentrator inlet, we believe strongly that the inlet section will enable differentiation between viable and non-viable populations, between types of cells, and between pathogens and background contamination. Selective, continuous focusing of particles in a microstream enables highly selective and sensitive identification using fluorescently labeled antibodies and other receptors such as peptides, aptamers, or small ligands to minimize false positives. Processes such as mixing and lysing will also benefit from the highly localized particle streams. The concentrator is based on faceted prisms to contract microfluidic flows while maintaining uniform flowfields. The resulting interfaces, capable of high throughput, serve as high-, low-, and band-pass filters to direct selected bioparticles to a rapid, affinity-based detection system. The proposed device is superior to existing array-based detectors as antibody-pathogen binding can be accomplished in seconds rather than tens of minutes or even hours. The system is being designed to interface with aerosol collectors under development by the National Laboratories or commercial systems. The focused stream is designed to be interrogated using diode lasers to differentiate pathogens by light scattering. Identification of particles is done using fluorescently labeled antibodies to tag the particles, followed by multiplexed laser-induced fluorescence (LIF) detection (achieved by labeling each antibody with a different dye).

More Details

3D scannerless LADAR for orbiter inspection

Proceedings of SPIE - The International Society for Optical Engineering

Nellums, Robert N.; Habbit, Robert D.; Heying, Mark R.; Pitts, Todd A.; Sandusky, John V.

The Space Shuttle Program requires on-orbit inspection of the thermal protection system which covers the Orbiter spacecraft, including the critical leading-edge surfaces. A scannerless ladar system mounted on a 50-foot boom extension of the robotic arm provides this capability. This paper describes the sensor and ground processing system, which were developed by Sandia National Laboratories to meet the requirements of the Return to Flight mission in July of 2005. Mission operations for this sensor system are also reviewed.

More Details

Correction of propagation-induced defocus effects in certain spotlight-mode SAR collections

Proceedings of SPIE - The International Society for Optical Engineering

Jakowatz, Charles V.; Wahl, Daniel E.

While the chief cause of defocus in airborne spotlight-mode imagery is uncompensated errors in the measurement of the aircraft position as it traverses the synthetic aperture, another physical phenomenon can cause blurring in the formed SAR image as well. This is the injection of phase errors into the collected SAR phase history data by random fluctuations in the index of refraction as the microwave pulses propagate through an atmosphere that contains irregularities in the tropospheric water vapor distribution. In this paper, we show that in SAR imagery collected under certain conditions, these phase errors can be detected and corrected using a robust autofocus algorithm such as Phase Gradient Autofocus (PGA). The phase errors are confirmed as having been propagation-induced by demonstrating that they exhibit a power-law spectrum described by Tatarski, based on the turbulence model of Kolmogorov.

More Details

Comparison of polar formatting and back-projection algorithms for spotlight-mode SAR image formation

Proceedings of SPIE - The International Society for Optical Engineering

Jakowatz, Charles V.; Doren, Neall

The convolution/back-projection (CBP) algorithm has recently once again been touted as the "gold standard" for spotlight-mode SAR image formation, as it is proclaimed to achieve better image quality than the well-known and often employed polar formatting algorithm (PFA) 1. In addition, it has been suggested that PFA is less flexible than CBP in that PFA can only compute the SAR image on one grid and PFA cannot add or subtract pulses from the imaging process. The argument for CBP acknowledges the computational burden of CBP compared to PFA, but asserts that the increased image accuracy and flexibility of the formation process is warranted, at least in some imaging scenarios. Because CBP can now be sped up by the proper algorithm design, it becomes, according to this line of analysis, the clear algorithm of choice for SAR image formation. In this paper we reject the above conclusion by showing that PFA and CBP achieve the same image quality, and that PFA has complete flexibility, including choice of imaging plane, size of illuminated beam area to be imaged, resolution of the image, and others. We demonstrate these claims via formation of both simulated and real SAR imagery using both algorithms.

More Details

Hyperspectral confocal microscope

Applied Optics

Sinclair, Michael B.; Haaland, David M.; Timlin, Jerilyn A.; Jones, Howland D.

We have developed a new, high performance, hyperspectral microscope for biological and other applications. For each voxel within a three-dimensional specimen, the microscope simultaneously records the emission spectrum from 500 nm to 800 nm, with better than 3 nm spectral resolution. The microscope features a fully confocal design to ensure high spatial resolution and high quality optical sectioning. Optical throughput and detection efficiency are maximized through the use of a custom prism spectrometer and a backside thinned electron multiplying charge coupled device (EMCCD) array. A custom readout mode and synchronization scheme enable 512-point spectra to be recorded at a rate of 8300 spectra per second. In addition, the EMCCD readout mode eliminates curvature and keystone artifacts that often plague spectral imaging systems. The architecture of the new microscope is described in detail, and hyperspectral images from several specimens are presented.

More Details

Using arbitrary trial distributions to improve intramolecular sampling in configurational-bias Monte Carlo

Molecular Physics

Martin, Marcus G.; Frischknecht, Amalie F.

A new formulation of configurational-bias Monte Carlo that uses arbitrary distributions to generate trial bond lengths, angles and dihedrals is described and shown to provide similar acceptance rates with substantially less computational effort. Several different trial distributions are studied and a linear combination of the ideal distribution plus Gaussian distributions automatically fit to the energetic and ideal terms is found to give the best results. The use of these arbitrary trial distributions enables a new formulation of coupled-decoupled configurational bias Monte Carlo that has significantly higher acceptance rates for cyclic molecules. The chemical potential measured via a modified Widom insertion is found to be ill-defined in the case of a molecule that has flexible bond lengths due to the unbounded probability distribution that describes the distance between any two atoms. We propose a simple standard state that allows the computation of consistent chemical potentials for molecules with flexible bonds. We show that the chemical potential via Widom insertion is not computed properly for molecules with Coulombic interactions when the number of trials for any of the nonbonded selection steps is greater than one. Finally, we demonstrate the power of the new algorithms by sampling the side-chain conformations of a polypeptide.

More Details

Dynamic pull-in of parallel-plate and torsional electrostatic MEMS actuators

Journal of Microelectromechanical Systems

Nielson, Gregory N.; Barbastathis, George

An analysis of the dynamic characteristics of pull-in for parallel-plate and torsional electrostatic actuators is presented. Traditionally, the analysis for pull-in has been done using quasi-static assumptions. However, it was recently shown experimentally that a step input can cause a decrease in the voltage required for pull-in to occur. We propose an energy-based solution for the step voltage required for pull-in that predicts the experimentally observed decrease in the pull-in voltage. We then use similar energy techniques to explore pull-in due to an actuation signal that is modulated depending on the sign of the velocity of the plate (i.e., modulated at the instantaneous mechanical resonant frequency). For this type of actuation signal, significant reductions in the pull-in voltage can theoretically be achieved without changing the stiffness of the structure. This analysis is significant to both parallel-plate and torsional electrostatic microelectromechanical systems (MEMS) switching structures where a reduced operating voltage without sacrificing stiffness is desired, as well as electrostatic MEMS oscillators where pull-in due to dynamic effects needs to be avoided. © 2006 IEEE.

More Details

Effects of total dose irradiation on single-event upset hardness

IEEE Transactions on Nuclear Science

Schwank, James R.; Shaneyfelt, Marty R.; Felix, James A.; Dodd, Paul E.; Baggio, J.; Ferlet-Cavrois, V.; Paillet, P.; Hash, Gerald L.; Flores, Richard S.; Massengill, L.W.; Blackmore, E.

The effect of total dose on SEU hardness is investigated as a function of temperature and power supply voltage to determine worst-case hardness assurance test conditions for space environments. SRAMs from six different vendors were characterized for single-event upset (SEU) hardness at proton energies from 20 to 500 MeV and at temperatures of 25 and 80°C after total dose irradiating the SRAMs with either protons, Co-60 gamma rays, or low-energy x-rays. It is shown that total dose irradiation and the memory pattern written to the memory array during total dose irradiation and SEU characterization can substantially affect SEU hardness for some SRAMs. For one SRAM, the memory pattern made more than two orders of magnitude difference in SEU cross section at the highest total dose level examined. For all SRAMs investigated, the memory pattern that led to the largest increase in SEU cross section was the same memory pattern that led to the maximum increase in total-dose induced power supply leakage current. In addition, it is shown that increasing the temperature during SEU characterization can also increase the effect of total dose on SEU hardness. As a result, worst-case SEU hardness assurance test conditions are the maximum total dose and temperature of the system environment, and the minimum operating voltage of the SRAM. Possible screens for determining whether or not the SEU cross section of an SRAM will vary with total dose, based on the magnitude of the increase in power supply leakage current with total dose or the variation in SEU cross section with power supply voltage, have been suggested. In contrast to previous works, our results using selective area x-ray irradiations show that the source of the effect of total dose on SEU hardness is radiation-induced leakage currents in the memory cells. The increase in SEU cross section with total dose appears to be consistent with radiation-induced currents originating in the memory cells affecting the output bias levels of bias level shift circuitry used to control the voltage levels to the memory cells and/or due to the lowering of the noise margin of individual memory cells caused by radiation-induced leakage currents. © 2006 IEEE.

More Details

Elimination of enhanced low-dose-rate sensitivity in linear bipolar devices using silicon-carbide passivation

IEEE Transactions on Nuclear Science

Shaneyfelt, Marty R.; Maher, Michael C.; Camilletti, Robert C.; Schwank, James R.; Pease, Ronald L.; Russell, Brian A.; Dodd, Paul E.

The type of final chip passivation layer used to fabricate linear bipolar circuits can have a major impact on the total dose hardness of some circuits. It is demonstrated that National Semiconductor Corporation linear bipolar devices fabricated with only an amorphous silicon carbide passivation layer do not exhibit enhanced low-dose-rate sensitivity (ELDRS), while devices from the same production lot fabricated with other types of passivation layers are ELDRS sensitive. SiC passivation possesses mechanical, electrical and chemical properties that make it compatible with linear device fabrication processes. These properties of SiC passivation layers, combined with the excellent radiation response of devices passivated with SiC, make SiC passivation layers a very attractive choice for devices packaged in either ceramic or plastic-encapsulated packages for use in space environments. © 2006 IEEE.

More Details

The hydrogen-fueled internal combustion engine: a technical review

International Journal of Hydrogen Energy

White, C.M.; Steeper, Richard R.; Lutz, Andrew E.

A review is given of contemporary research on the hydrogen-fueled internal combustion engine. The emphasis is on light- to medium-duty engine research. We first describe hydrogen-engine fundamentals by examining the engine-specific properties of hydrogen and surveying the existing literature. Here it will be shown that, due to low volumetric efficiencies and frequent preignition combustion events, the power densities of premixed or port-fuel-injected hydrogen engines are diminished relative to gasoline-fueled engines. Significant progress has been made in the development of advanced hydrogen engines with improved power densities. We discuss several examples and their salient features. Finally, we consider the overall progress made and provide suggestions for future work. © 2006 International Association for Hydrogen Energy.

More Details

FreedomCAR :electrical energy storage system abuse test manual for electric and hybrid electric vehicle applications

Doughty, Daniel H.

This manual defines a complete body of abuse tests intended to simulate actual use and abuse conditions that may be beyond the normal safe operating limits experienced by electrical energy storage systems used in electric and hybrid electric vehicles. The tests are designed to provide a common framework for abuse testing various electrical energy storage systems used in both electric and hybrid electric vehicle applications. The manual incorporates improvements and refinements to test descriptions presented in the Society of Automotive Engineers Recommended Practice SAE J2464 ''Electric Vehicle Battery Abuse Testing'' including adaptations to abuse tests to address hybrid electric vehicle applications and other energy storage technologies (i.e., capacitors). These (possibly destructive) tests may be used as needed to determine the response of a given electrical energy storage system design under specifically defined abuse conditions. This manual does not provide acceptance criteria as a result of the testing, but rather provides results that are accurate and fair and, consequently, comparable to results from abuse tests on other similar systems. The tests described are intended for abuse testing any electrical energy storage system designed for use in electric or hybrid electric vehicle applications whether it is composed of batteries, capacitors, or a combination of the two.

More Details

Heavy ion beam induced current/charge (IBIC) through insulating oxides

Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms

Vizkelethy, Gyorgy; Brice, David K.; Doyle, Barney L.

Model experiments were performed on MOS (metal-oxide semiconductor) capacitors to study ion beam induced charge generation in silicon-on-insulator (SOI) devices. Surprisingly large induced charge was found and a lateral non-uniformity of the induced charge was discovered across the top electrode of the capacitor. In this paper we will give a simple model for the charge induction in MOS structures and an explanation of the lateral changes in the amount of induced charge. © 2006 Elsevier B.V. All rights reserved.

More Details

PIXE-quantified AXSIA: Elemental mapping by multivariate spectral analysis

Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms

Doyle, Barney L.; Provencio, P.N.; Kotula, Paul G.; Antolak, Arlyn J.; Ryan, C.G.; Campbell, J.L.; Barrett, K.

Automated, nonbiased, multivariate statistical analysis techniques are useful for converting very large amounts of data into a smaller, more manageable number of chemical components (spectra and images) that are needed to describe the measurement. We report the first use of the multivariate spectral analysis program AXSIA (Automated eXpert Spectral Image Analysis) developed at Sandia National Laboratories to quantitatively analyze micro-PIXE data maps. AXSIA implements a multivariate curve resolution technique that reduces the spectral image data sets into a limited number of physically realizable and easily interpretable components (including both spectra and images). We show that the principal component spectra can be further analyzed using conventional PIXE programs to convert the weighting images into quantitative concentration maps. A common elemental data set has been analyzed using three different PIXE analysis codes and the results compared to the cases when each of these codes is used to separately analyze the associated AXSIA principal component spectral data. We find that these comparisons are in good quantitative agreement with each other. © 2006 Elsevier B.V. All rights reserved.

More Details

Size exclusion chromatography of microliter volumes for on-line use in low-pressure microfluidic systems

Analytical Chemistry

Chirica, Gabriela C.; Lachmann, J.; Chan, J.

We have developed a new cartridge format for on-line size exclusion processing in low-pressure, portable microfluidic devices. The described system allows size exclusion chromatography of microliter volumes (termed μL-SEC) to be performed with ready integration in complex protocols for continuous-flow sample processing and analysis. The refillable cartridge format was employed for the preparation of Bacillus subtilus spores lysed in the presence of a strong reducing agent. While the reducing agent is known to interfere with subsequent fluorescent labeling of the solubilized proteins, the described continuous-flow size exclusion processing allowed complete isolation of interferences from a 10-μL sample in 70 s. Following efficient labeling, the protein sample was injected and separated on-chip using gel electrophoresis. To increase the resolution, speed, and sample capacity of buffer exchange under low-pressure operation (40 psi), parameters such as the size exclusion resin, load volumes, flow rates, buffer composition, and cartridge geometry were optimized and are presented here. The μL-SEC analysis is compatible with automated sample preparation for microfluidic systems and has resulted in significantly increased analysis speed and throughput over benchtop methods. The presented technique has the potential to improve capabilities such as buffer exchange, size fractionation, and high-abundance protein removal-steps that are frequently required prior to on-chip, point-of-care, and mass spectrometric analyses. © 2006 American Chemical Society.

More Details

A critical implanted Cl concentration for pit initiation on aluminum thin films

Journal of the Electrochemical Society

Serna, L.M.; Zavadil, Kevin R.; Johnson, C.M.; Wall, Frederick D.; Barbour, J.C.

The pitting potential of pure aluminum thin films in 50 mM K2 S O4 was measured as a function of implanted Cl fluence. Samples were implanted with 35 keV Cl+ at room temperature using fluences from 2.25× 1016 to 3.25× 1016 ions cm-2 in increments of 0.25× 1016. An empirical relationship between pitting potential and fluence was found which suggests a critical Cl concentration in the oxide is necessary for pit initiation. No correlation between pitting potential and the measured Cl concentration or distribution in the metal was found. © 2006 The Electrochemical Society. All rights reserved.

More Details

Critical manifolds in non-linear response of complex materials

Mechanics of Materials

Duxbury, P.M.; McGarrity, E.S.; Holm, Elizabeth A.

We describe two geometric structures, the shortest path and the minimum cut, and show that these structures emerge at special threshold points in the highly non-linear electrical response of complex networks. Algorithms which find the shortest path and the minimum cut directly as well as methods for finding the full non-linear response of complex networks are outlined. Scaling laws for the behavior of the shortest path and minimum cut in random networks are then surveyed. Finally, applications of the shortest path and minimum cut to grain boundary controlled polycrystalline materials are elucidated. © 2005 Elsevier Ltd. All rights reserved.

More Details
Results 82076–82100 of 96,771
Results 82076–82100 of 96,771