Publications

Results 78126–78150 of 96,771

Search results

Jump to search filters

CX-100 Manufacturing (Final Project Report)

Berry, Derek S.

This report details the work completed under the CX-100 blade manufacturing project. It presents the tooling design and manufacturing, blade production, blade instrumentation, blade shipping and adapter plate design and fabrication. The CX-100 blade was designed to demonstrate the efficient use of carbon fiber in the spar cap of a wind turbine blade. The baseline blade used for this project was the ERS-100 (Revision D) wind turbine blade. ERS-100 master plugs – for both the high pressure and low pressure skins – were modified to create plugs for the CX-100. Using the new CX-100 master skin plugs, high pressure and low pressure molds were fabricated. Similar modifications were also completed on the shear web plug/mold, the blade assembly fixture and the root stud insertion fixture. Once all of the tooling modifications were complete, a production run of seven CX-100 prototype blades was undertaken. Of those seven blades, four were instrumented with strain gauges before final assembly. After production at the TPI facility in Rhode Island, the blades were shipped to various test sites: two blades to the NWTC at NREL, two blades to Sandia National Laboratory and three blades to the USDA-ARS turbine field test facility located in Bushland, Texas. An adapter plate was designed to allow the CX-100 blades to be installed on existing Micron 65/13M turbines at the USDA site. The conclusion of this program is the kick-off of the blade testing at the three testing facilities.

More Details

Electron transport in zinc-blende wurtzite biphasic gallium nitride nanowires and GaNFETs

Nanotechnology

Jacobs, Benjamin W.; Ayres, Virginia M.; Stallcup, Richard E.; Hartman, Alan; Tupta, Mary A.; Baczewski, Andrew D.; Crimp, Martin A.; Halpern, Joshua B.; He, Maoqi; Shaw, Harry C.

Two-point and four-point probe electrical measurements of a biphasic gallium nitride nanowire and current–voltage characteristics of a gallium nitride nanowire based field effect transistor are reported. The biphasic gallium nitride nanowires have a crystalline homostructure consisting of wurtzite and zinc-blende phases that grow simultaneously in the longitudinal direction. There is a sharp transition of one to a few atomic layers between each phase. Here, all measurements showed high current densities. Evidence of single-phase current transport in the biphasic nanowire structure is discussed.

More Details

Full-field characterization of mechanical behavior of polyurethane foams

International Journal of Solids and Structures

Jin, Helena; Lu, Wei-Yang L.; Scheffel, Simon S.; Hinnerichs, Terry D.; Neilsen, Michael K.

The foam material of interest in this investigation is a rigid closed-cell polyurethane foam PMDI with a nominal density of 20 pcf (320 kg/m3). Three separate types of compression experiments were conducted on foam specimens. The heterogeneous deformation of foam specimens and strain concentration at the foam-steel interface were obtained using the 3-dimensional digital image correlation (3D-DIC) technique. These experiments demonstrated that the 3D-DIC technique is able to obtain accurate and full-field large deformation of foam specimens, including strain concentrations. The experiments also showed the effects of loading configurations on deformation and strain concentration in foam specimens. These DIC results provided experimental data to validate the previously developed viscoplastic foam model (VFM). In the first experiment, cubic foam specimens were compressed uniaxially up to 60%. The full-field surface displacement and strain distributions obtained using the 3D-DIC technique provided detailed information about the inhomogeneous deformation over the area of interest during compression. In the second experiment, compression tests were conducted for cubic foam specimens with a steel cylinder inclusion, which imitate the deformation of foam components in a package under crush conditions. The strain concentration at the interface between the steel cylinder and the foam specimen was studied in detail. In the third experiment, the foam specimens were loaded by a steel cylinder passing through the center of the specimens rather than from its end surface, which created a loading condition of the foam components similar to a package that has been dropped. To study the effects of confinement, the strain concentration and displacement distribution over the defined sections were compared for cases with and without a confinement fixture.

More Details

Congestion and cascades in payment systems

Physica A: Statistical Mechanics and its Applications

Beyeler, Walter E.; Glass, Robert J.; Bech, Morten L.; Soramäki, Kimmo

We develop a parsimonious model of the interbank payment system. The model incorporates an endogenous instruction arrival process, a scale-free topology of payments between banks, a fixed total liquidity which limits banks' capacity to process arriving instructions, and a global market that distributes liquidity. We find that at low liquidity the system becomes congested and payment settlement loses correlation with payment instruction arrival, becoming coupled across the network. The onset of congestion is evidently related to the relative values of three characteristic times: the time for banks' net position to return to 0, the time for a bank to exhaust its liquidity endowment, and the liquidity market relaxation time. In the congested regime settlement takes place in cascades having a characteristic length scale. A global liquidity market substantially attenuates congestion, requiring only a small fraction of the payment-induced liquidity flow to achieve strong beneficial effects. © 2007 Elsevier B.V. All rights reserved.

More Details

Multivariate statistical analysis of three-spatial-dimension TOF-SIMS raw data sets

Analytical Chemistry

Smentkowski, V.S.; Ostrowski, S.G.; Braunstein, E.; Keenan, M.R.; Ohlhausen, J.A.; Kotula, Paul G.

Three-spatial-dimension (3D) time-of-flight-secondary ion mass spectrometry (TOF-SIMS) analysis can be performed if an X-Y image is saved at each depth of a depth profile. In this paper, we will show how images reconstructed from specified depths, depth profiles generated from specific X-Y coordinates, as well as three-spatial-dimensional rendering provide for a better understanding of the sample than traditional depth profiling where only a single spectrum is collected at each depth. We will also demonstrate, for the first time, that multivariate statistical analysis (MVSA) tools can be used to perform a rapid, unbiased analysis of the entire 3D data set. In the example shown here, retrospective analysis and MVSA revealed a more complete picture of the 3D chemical distribution of the sample than did the as-measured depth profiling alone. Color overlays of the MVSA components as well as animated movies allowing for visualization (in 3D) from various angles will be provided. © 2007 American Chemical Society.

More Details

Advanced System Simulation, Emulation and Test (ASSET)

Concurrent Systems Engineering Series

Wickstrom, Gregory L.

Maturing embeddable real-time concepts into deployable high consequence systems faces numerous challenges. Although overcoming these challenges can be aided by commercially available processes, toolsets, and components, they often fall short of meeting the needs at hand. This paper will review the development of a framework being assembled to address many of the shortcomings while attempting to leverage commercial capabilities as appropriate. © 2007 The authors and IOS Press. All rights reserved.

More Details

Defect-domain wall interactions in trigonal ferroelectrics

Annual Review of Materials Research

Gopalan, Venkatraman; Dierolf, Volkmar; Scrymgeour, David A.

Domains and domain walls are a fundamental property of interest in ferroelectrics, magnetism, ferroelastics, superconductors, and multiferroic materials. Unlike magnetic Bloch walls, ideal ferroelectric domain walls are well accepted to be only one to two lattice units wide, over which polarization and strain change across the wall. However, walls in real ferroelectrics appear to show unexpected property variations in the vicinity of domain walls that can extend over micrometer length scales. This chapter specifically reviews the local electrical, elastic, optical, and structural properties of antiparallel domain walls in the trigonal ferroelectrics lithium niobate and lithium tantalate. It is shown that extrinsic point defects and their clustering play a key role in the observed local wall structure and influence macroscale properties by orders of magnitude. The review also raises broader and yet unexplored fundamental questions regarding intrinsic widths, defect-domain wall interactions, and static versus dynamic wall structure. Copyright © 2007 by Annual Reviews. All rights reserved.

More Details

High heat flux testing of a helium-cooled tungsten tube with porous foam

Fusion Engineering and Design

Youchison, Dennis L.; Lutz, Thomas J.; Williams, B.; Nygren, Richard E.

Utramet, Inc. fabricated one-piece heat exchanger tubes of chemical vapor deposited (CVD) tungsten (W), each with an internal porous mesh fused along either 51 or 38 mm of the axial length of a tube 15 mm in outer diameter. The open porous mesh has a structure of joined ligaments that combines relatively low resistance to flow and a large area for heat transfer. In tests at the Electron Beam Test Stand (EBTS) at Sandia National Laboratories, the maximum absorbed heat load was 22.4 MW/m2 with helium at 4 MPa, flowing at 27 g/s and with inlet and outlet temperatures of 40 and 91 °C and a pressure drop of ∼0.07 MPa. The preparation and testing of the samples was funded through a Phase I grant by the US Department of Energy's Small Business Innovation Research Program. The paper reports the surface temperature distribution indicated by an infrared camera, test conditions, a post-test examination in a scanning electron microscope and other details. © 2007 Elsevier B.V. All rights reserved.

More Details

Fabrication of ultrathin film capacitors by chemical solution deposition

Journal of Materials Research

Brennecka, Geoff L.; Tuttle, Bruce T.

A facile solution-based processing route using standard spin-coating deposition techniques has been developed for the production of reliable capacitors based on lead lanthanum zirconate titanate (PLZT) with active areas of ≥1 mm2 and dielectric layer thicknesses down to 50 nm. With careful control of the dielectric phase development through improved processing, ultrathin capacitors exhibited slim ferroelectric hysteresis loops and dielectric constants of >1000, similar to those of much thicker films. Thus, it has been demonstrated that chemical solution deposition is a viable route to the production of capacitor films which are as thin as 50 nm but are still macroscopically addressable with specific capacitance values >160 nF/mm2.

More Details

Investigations of the non-linear transient response of quantum point contacts using pulsed excitation with sub-nanosecond time resolution

Physica E: Low-Dimensional Systems and Nanostructures

Naser, B.; Ferry, D.K.; Heeren, J.; Reno, J.L.; Bird, J.P.

We review recent work where we have investigated the non-linear transient response of quantum point contacts (QPCs) using pulsed excitation with sub-nanosecond time resolution. The transient response of these devices is shown to be dominated by a large parallel capacitance that is independent of the QPC conductance and pulse amplitude. These characteristics lead us to suggest that the capacitance is associated with charging of the two-dimensional reservoirs that source and sink current to the QPC. Our investigations also show that the transient conductance of the QPC must develop very quickly as the voltage pulse is applied, at least on a time scale shorter than the fastest rise time (2 ns) used in the experiments. We also find the existence of a characteristic fixed point in the non-linear conductance, at which its value is bias independent. The fixed point appears to correspond to the situation where the unbiased QPC is almost depopulated and can be accounted for by considering the unidirectional population of QPC subbands by the voltage bias. To discuss the behavior of the transient conductance away from the fixed point, we find that it should be necessary to consider the influence of the applied bias on the QPC profile and electron-phonon scattering. © 2007 Elsevier B.V. All rights reserved.

More Details

Materials-based process tolerances for neutron generator encapsulation

Adolf, Douglas B.; Stavig, Mark E.; Berry, Ryan S.

Variations in the neutron generator encapsulation process can affect functionality. However, instead of following the historical path in which the effects of process variations are assessed directly through functional tests, this study examines how material properties key to generator functionality correlate with process variations. The results of this type of investigation will be applicable to all generators and can provide insight on the most profitable paths to process and material improvements. Surprisingly, the results at this point imply that the process is quite robust, and many of the current process tolerances are perhaps overly restrictive. The good news lies in the fact that our current process ensures reproducible material properties. The bad new lies in the fact that it would be difficult to solve functional problems by changes in the process.

More Details

Non destructive testing of test objects

Mills, Bernice E.

In order to determine the visibility of various features by different techniques and in different settings, several test objects containing wires have been used as standards. Examples are shown of the use of x-ray and active thermal imaging for the detection of inclusions. The effect of x-ray accelerating voltage and confounding materials on the x-ray images is shown. Calculated transmission functions for selected materials at a range of voltages are given. The effect of confounding materials, finishes, and textures on thermography is shown and on x-radiography is discussed.

More Details

Summary of Degas II performance at the US Strategic Petroleum Reserve Big Hill site

Lord, David L.

Crude oil stored at the US Strategic Petroleum Reserve (SPR) requires mitigation procedures to maintain oil vapor pressure within program delivery standards. Crude oil degasification is one effective method for lowering crude oil vapor pressure, and was implemented at the Big Hill SPR site from 2004-2006. Performance monitoring during and after degasification revealed a range of outcomes for caverns that had similar inventory and geometry. This report analyzed data from SPR degasification and developed a simple degas mixing (SDM) model to assist in the analysis. Cavern-scale oil mixing during degassing and existing oil heterogeneity in the caverns were identified as likely causes for the range of behaviors seen. Apparent cavern mixing patterns ranged from near complete mixing to near plug flow, with more mixing leading to less efficient degassing due to degassed oil re-entering the plant before 100% of the cavern oil volume was processed. The report suggests that the new cavern bubble point and vapor pressure regain rate after degassing be based on direct in-cavern measurements after degassing as opposed to using the plant outlet stream properties as a starting point, which understates starting bubble point and overstates vapor pressure regain. Several means to estimate the cavern bubble point after degas in the absence of direct measurement are presented and discussed.

More Details

Predictive Capability Maturity Model for computational modeling and simulation

Pilch, Martin P.; Oberkampf, William L.; Trucano, Timothy G.

The Predictive Capability Maturity Model (PCMM) is a new model that can be used to assess the level of maturity of computational modeling and simulation (M&S) efforts. The development of the model is based on both the authors experience and their analysis of similar investigations in the past. The perspective taken in this report is one of judging the usefulness of a predictive capability that relies on the numerical solution to partial differential equations to better inform and improve decision making. The review of past investigations, such as the Software Engineering Institute's Capability Maturity Model Integration and the National Aeronautics and Space Administration and Department of Defense Technology Readiness Levels, indicates that a more restricted, more interpretable method is needed to assess the maturity of an M&S effort. The PCMM addresses six contributing elements to M&S: (1) representation and geometric fidelity, (2) physics and material model fidelity, (3) code verification, (4) solution verification, (5) model validation, and (6) uncertainty quantification and sensitivity analysis. For each of these elements, attributes are identified that characterize four increasing levels of maturity. Importantly, the PCMM is a structured method for assessing the maturity of an M&S effort that is directed toward an engineering application of interest. The PCMM does not assess whether the M&S effort, the accuracy of the predictions, or the performance of the engineering system satisfies or does not satisfy specified application requirements.

More Details

Sonar atlas of caverns comprising the U.S. Strategic Petroleum Reserve. Volume 1, Bayou Choctaw site, Louisiana

Rautman, Christopher A.; Lord, Anna S.

Downhole sonar surveys from the four active U.S. Strategic Petroleum Reserve sites have been modeled and used to generate a four-volume sonar atlas, showing the three-dimensional geometry of each cavern. This volume 1 focuses on the Bayou Choctaw SPR site, located in southern Louisiana. Volumes 2, 3, and 4, respectively, present images for the Big Hill SPR site, Texas, the Bryan Mound SPR site, Texas, and the West Hackberry SPR site, Louisiana. The atlas uses a consistent presentation format throughout. The basic geometric measurements provided by the down-cavern surveys have also been used to generate a number of geometric attributes, the values of which have been mapped onto the geometric form of each cavern using a color-shading scheme. The intent of the various geometrical attributes is to highlight deviations of the cavern shape from the idealized cylindrical form of a carefully leached underground storage cavern in salt. The atlas format does not allow interpretation of such geometric deviations and anomalies. However, significant geometric anomalies, not directly related to the leaching history of the cavern, may provide insight into the internal structure of the relevant salt dome.

More Details

Final report : LDRD project 79824 carbon nanotube sorting via DNA-directed self-assembly

Leung, Kevin L.; Robinson, David R.; Rempe, Susan R.

Single-wall carbon nanotubes (SWNTs) have shown great promise in novel applications in molecular electronics, biohazard detection, and composite materials. Commercially synthesized nanotubes exhibit a wide dispersion of geometries and conductivities, and tend to aggregate. Hence the key to using these materials is the ability to solubilize and sort carbon nanotubes according to their geometric/electronic properties. One of the most effective dispersants is single-stranded DNA (ssDNA), but there are many outstanding questions regarding the interaction between nucleic acids and SWNTs. In this work we focus on the interactions of SWNTs with single monomers of nucleic acids, as a first step to answering these outstanding questions. We use atomistic molecular dynamics simulations to calculate the binding energy of six different nucleotide monophosphates (NMPs) to a (6,0) single-wall carbon nanotube in aqueous solution. We find that the binding energies are generally favorable, of the order of a few kcal/mol. The binding energies of the different NMPs were very similar in salt solution, whereas we found a range of binding energies for NMPs in pure water. The binding energies are sensitive to the details of the association of the sodium ions with the phosphate groups and also to the average conformations of the nucleotides. We use electronic structure (Density Functional Theory (DFT) and Moller-Plesset second order perturbation to uncorrelated Hartree Fock theory (MP2)) methods to complement the classical force field study. With judicious choices of DFT exchange correlation functionals, we find that DFT, MP2, and classical force field predictions are in qualitative and even quantitative agreement; all three methods should give reliable and valid predictions. However, in one important case, the interactions between ions and metallic carbon nanotubes--the SWNT polarization-induced affinity for ions, neglected in most classical force field studies, is found to be extremely large (on the order of electron volts) and may have important consequences for various SWNT applications. Finally, the adsorption of NMPs onto single-walled carbon nanotubes were studied experimentally. The nanotubes were sonicated in the presence of the nucleotides at various weight fractions and centrifuged before examining the ultraviolet absorbance of the resulting supernatant. A distinct Langmuir adsorption isotherm was obtained for each nucleotide. All of the nucleotides differ in their saturation value as well as their initial slope, which we attribute to differences both in nucleotide structure and in the binding ability of different types or clusters of tubes. Results from this simple system provide insights toward development of dispersion and separation methods for nanotubes: strongly binding nucleotides are likely to help disperse, whereas weaker ones may provide selectivity that may be beneficial to a separation process.

More Details

A mathematical framework for multiscale science and engineering : the variational multiscale method and interscale transfer operators

Bochev, Pavel B.; Collis, Samuel S.; Jones, Reese E.; Lehoucq, Richard B.; Parks, Michael L.; Scovazzi, Guglielmo S.; Silling, Stewart A.; Templeton, Jeremy A.; Wagner, Gregory J.

This report is a collection of documents written as part of the Laboratory Directed Research and Development (LDRD) project A Mathematical Framework for Multiscale Science and Engineering: The Variational Multiscale Method and Interscale Transfer Operators. We present developments in two categories of multiscale mathematics and analysis. The first, continuum-to-continuum (CtC) multiscale, includes problems that allow application of the same continuum model at all scales with the primary barrier to simulation being computing resources. The second, atomistic-to-continuum (AtC) multiscale, represents applications where detailed physics at the atomistic or molecular level must be simulated to resolve the small scales, but the effect on and coupling to the continuum level is frequently unclear.

More Details

Controlled fabrication of nanowire sensors

Leonard, Francois L.

We present a simple top down approach based on nanoimprint lithography to create dense arrays of silicon nanowires over large areas. Metallic contacts to the nanowires and a bottom gate allow the operation of the array as a field-effect transistor with very large on/off ratios. When exposed to ammonia gas or cyclohexane solutions containing nitrobenzene or phenol, the threshold voltage of the field-effect transistor is shifted, a signature of charge transfer between the analytes and the nanowires. The threshold voltage shift is proportional to the Hammett parameter and the concentration of the nitrobenzene and phenol analytes. For the liquid analytes considered, we find binding energies of 400 meV, indicating strong physisorption. Such values of the binding energies are ideal for stable and reusable sensors.

More Details

The mechanics of soft biological composites

Boyce, Brad B.; Grazier, J.M.

Biological tissues are uniquely structured materials with technologically appealing properties. Soft tissues such as skin, are constructed from a composite of strong fibrils and fluid-like matrix components. This was the first coordinated experimental/modeling project at Sandia or in the open literature to consider the mechanics of micromechanically-based anisotropy and viscoelasticity of soft biological tissues. We have exploited and applied Sandia's expertise in experimentation and mechanics modeling to better elucidate the behavior of collagen fibril-reinforced soft tissues. The purpose of this project was to provide a detailed understanding of the deformation of ocular tissues, specifically the highly structured skin-like tissue in the cornea. This discovery improved our knowledge of soft/complex materials testing and modeling. It also provided insight into the way that cornea tissue is bio-engineered such that under physiologically-relevant conditions it has a unique set of properties which enhance functionality. These results also provide insight into how non-physiologic loading conditions, such as corrective surgeries, may push the cornea outside of its natural design window, resulting in unexpected non-linear responses. Furthermore, this project created a clearer understanding of the mechanics of soft tissues that could lead to bio-inspired materials, such as highly supple and impact resistant body armor, and improve our design of human-machine interfaces, such as micro-electrical-mechanical (MEMS) based prosthetics.

More Details

Development of design and simulation model and safety study of large-scale hydrogen production using nuclear power

Rodriguez, Salvador B.; Gauntt, Randall O.; Gelbard, Fred G.; Drennen, Thomas E.; Malczynski, Leonard A.; Martin, William J.

Before this LDRD research, no single tool could simulate a very high temperature reactor (VHTR) that is coupled to a secondary system and the sulfur iodine (SI) thermochemistry. Furthermore, the SI chemistry could only be modeled in steady state, typically via flow sheets. Additionally, the MELCOR nuclear reactor analysis code was suitable only for the modeling of light water reactors, not gas-cooled reactors. We extended MELCOR in order to address the above deficiencies. In particular, we developed three VHTR input models, added generalized, modular secondary system components, developed reactor point kinetics, included transient thermochemistry for the most important cycles [SI and the Westinghouse hybrid sulfur], and developed an interactive graphical user interface for full plant visualization. The new tool is called MELCOR-H2, and it allows users to maximize hydrogen and electrical production, as well as enhance overall plant safety. We conducted validation and verification studies on the key models, and showed that the MELCOR-H2 results typically compared to within less than 5% from experimental data, code-to-code comparisons, and/or analytical solutions.

More Details

Pulse shaping effects on weld porosity in laser beam spot welds : contrast of long- & short- pulse welds

Norris, J.T.; Perricone, Matthew J.

Weld porosity is being investigated for long-pulse spot welds produced by high power continuous output lasers. Short-pulse spot welds (made with a pulsed laser system) are also being studied but to a much small extent. Given that weld area of a spot weld is commensurate with weld strength, the loss of weld area due to an undefined or unexpected pore results in undefined or unexpected loss in strength. For this reason, a better understanding of spot weld porosity is sought. Long-pulse spot welds are defined and limited by the slow shutter speed of most high output power continuous lasers. Continuous lasers typically ramp up to a simmer power before reaching the high power needed to produce the desired weld. A post-pulse ramp down time is usually present as well. The result is a pulse length tenths of a second long as oppose to the typical millisecond regime of the short-pulse pulsed laser. This study will employ a Lumonics JK802 Nd:YAG laser with Super Modulation pulse shaping capability and a Lasag SLS C16 40 W pulsed Nd:YAG laser. Pulse shaping will include square wave modulation of various peak powers for long-pulse welds and square (or top hat) and constant ramp down pulses for short-pulse welds. Characterization of weld porosity will be performed for both pulse welding methods.

More Details

Implementing wide baseline matching algorithms on a graphics processing unit

Myers, Daniel S.; Gonzales, Antonio G.; Rothganger, Fredrick R.; Larson, K.W.

Wide baseline matching is the state of the art for object recognition and image registration problems in computer vision. Though effective, the computational expense of these algorithms limits their application to many real-world problems. The performance of wide baseline matching algorithms may be improved by using a graphical processing unit as a fast multithreaded co-processor. In this paper, we present an implementation of the difference of Gaussian feature extractor, based on the CUDA system of GPU programming developed by NVIDIA, and implemented on their hardware. For a 2000x2000 pixel image, the GPU-based method executes nearly thirteen times faster than a comparable CPU-based method, with no significant loss of accuracy.

More Details
Results 78126–78150 of 96,771
Results 78126–78150 of 96,771