Publications

Results 75826–75850 of 99,299

Search results

Jump to search filters

KAYENTA : theory and user's guide

Strack, Otto E.

The physical foundations and domain of applicability of the Kayenta constitutive model are presented along with descriptions of the source code and user instructions. Kayenta, which is an outgrowth of the Sandia GeoModel, includes features and fitting functions appropriate to a broad class of materials including rocks, rock-like engineered materials (such as concretes and ceramics), and metals. Fundamentally, Kayenta is a computational framework for generalized plasticity models. As such, it includes a yield surface, but the term 'yield' is generalized to include any form of inelastic material response including microcrack growth and pore collapse. Kayenta supports optional anisotropic elasticity associated with ubiquitous joint sets. Kayenta supports optional deformation-induced anisotropy through kinematic hardening (in which the initially isotropic yield surface is permitted to translate in deviatoric stress space to model Bauschinger effects). The governing equations are otherwise isotropic. Because Kayenta is a unification and generalization of simpler models, it can be run using as few as 2 parameters (for linear elasticity) to as many as 40 material and control parameters in the exceptionally rare case when all features are used. For high-strain-rate applications, Kayenta supports rate dependence through an overstress model. Isotropic damage is modeled through loss of stiffness and strength.

More Details

Notes on "Modeling, simulation and analysis of complex networked systems"

Mayo, Jackson R.

This is meant as a place to put commentary on the whitepaper and is meant to be pretty much ad-hoc. Because the whitepaper describes a potential program in DOE ASCR and because it concerns many researchers in the field, these notes are meant to be extendable by anyone willing to put in the effort. Of course criticisms of the contents of the notes themselves are also welcome.

More Details

Shear thinning of nanoparticle suspensions

Physical Review E - Statistical, Nonlinear, and Soft Matter Physics

In't Veld, Pieter J.; Petersen, Matt K.; Grest, Gary S.

Results of large scale nonequilibrium molecular dynamics simulations are presented for nanoparticles in an explicit solvent. The nanoparticles are modeled as a uniform distribution of Lennard-Jones particles, while the solvent is represented by standard Lennard-Jones particles. We present results for the shear rheology of spherical nanoparticles of diameter 10 times that of the solvent for a range of nanoparticle volume fractions. By varying the strength of the interactions between nanoparticles and with the solvent, this system can be used to model colloidal gels and glasses as well as hard spherelike nanoparticles. Effect of including the solvent explictly is demonstrated by comparing the pair correlation function of nanoparticles to that in an implicit solvent. The shear rheology for dumbbell nanoparticles made of two fused spheres is similar to that of single nanoparticle. © 2009 The American Physical Society.

More Details

Direct observation of spinlike reaction fronts in planar energetic multilayer foils

Applied Physics Letters

McDonald, Joel P.; Hodges, V.C.; Jones, Eric; Adams, David P.

Propagating reactions in initially planar cobalt/aluminum exothermic multilayer foils have been investigated using high-speed digital photography. Real-time observations of reactions indicate that unsteady (spinlike) reaction propagation leads to the formation of highly periodic surface morphologies with length scales ranging from 1 μm to 1 mm. The characteristics of propagating spinlike reactions and corresponding reacted foil morphologies depend on the bilayer thickness of multilayer foils. © 2009 American Institute of Physics.

More Details

Exploiting spatial-domain simplicity in spectral image analysis

Surface and Interface Analysis

Keenan, Michael R.

Full-spectrum imaging is fast becoming a tool of choice for characterizing heterogeneous materials. Spectral images, which consist of a complete spectrum at each point in a spatial array, can be acquired from a wide variety of surface and microanalytical spectroscopic techniques. It is not uncommon that such spectral image data sets comprise tens of thousands of individual spectra, or more. Given the vast quantities of raw spectral data, factor analysis methods have proved indispensable for extracting the chemical information from these high-dimensional data sets into a limited number of factors that represent the spectral and spatial characteristics of the sample's composition. It is well known that factor models suffer a 'rotational ambiguity', that is, there are an infinite number of factor models that will fit the data equally well. Thus, physically inspired constraints are often employed to derive relatively unique models that make the individual factors more easily interpreted by the practicing analyst. In the present work, we note that many samples undergoing spectral image analysis are 'simple' in the sense that only one or a few of the sample's constituents are present at any particular location. When this situation prevails, simplicity in the spatial domain can be exploited to make the resulting factor models more realistic. In particular, orthogonal rotation of the spatial-domain vectors arising from singular value decomposition (SVD) of the spectral data matrix will be shown to be an effective method for making physically acceptable and easily interpretable estimates of the pure-component spectra and abundances. Copyright © 2009 John Wiley & Sons, Ltd.

More Details

Methods for kinetic modeling of temporally resolved hyperspectral confocal fluorescence images

Applied Spectroscopy

Cutler, Patrick J.; Haaland, David M.; Andries, Erik; Gemperline, Paul J.

Elucidating kinetic information (rate constants) from temporally resolved hyperspectral confocal fluorescence images offers some very important opportunities for the interpretation of spatially resolved hyperspectral confocal fluorescence images but also presents significant challenges, these being (1) the massive amount of data contained in a series of time-resolved spectral images (one time course of spectral data for each pixel) and (2) unknown concentrations of the reactants and products at time = 0, a necessary precondition normally required by traditional kinetic fitting approaches. This paper describes two methods for solving these problems: direct nonlinear (DNL) estimation of all parameters and separable least squares (SLS). The DNL method can be applied to reactions of any rate law, while the SLS method is restricted to first-order reactions. In SLS, the inherently linear and nonlinear parameters of first-order reactions are solved in separate linear and nonlinear steps, respectively. The new methods are demonstrated using simulated data sets and an experimental data set involving photobleaching of several fluorophores. This work demonstrates that both DNL and SLS hard-modeling methods applied to the kinetic modeling of temporally resolved hyperspectral images can outperform traditional soft-modeling and hard/soft-modeling methods which use multivariate curve resolution-alternating least squares (MCR-ALS) methods. In addition, the SLS method is much faster and is able to analyze much larger data sets than the DNL method. © 2009 Society for Applied Spectroscopy.

More Details

Natural helium as a screening tool for assessing caprock imperfections at geologic CO2 storage sites

Energy Procedia

Heath, Jason E.; McPherson, Brian; Phillips, Fred; Cooper, Scott; Dewers, Thomas

Natural helium is a screening tool for identifying the presence or absence of caprock imperfections. Imperfections can be manifested as a variety of features or processes, including insufficiently low permeability, preferential flowpaths such as fractures and faults, and the propensity for capillary breakthrough. Theory and simulations detail how various types of imperfections affect the spatial distribution of natural helium above, within, and below caprock in a single-phase, brine-saturated system. Specifically, the distribution of natural helium can reveal the presence of preferential flowpaths through formations with low matrix permeability. The distribution patterns of helium shed insight on the size, shape, location, and connectedness of imperfections in caprock. We show how imperfections associated with characteristic distributions of natural helium will affect the retention of CO2. We discuss the advantages of natural helium, together with temperature distributions, for revealing imperfections and the optimum locations for sampling the natural tracers. This research is being carried out to support design and interpretation of ongoing field-testing by the Southwest Regional Partnership on Carbon Sequestration. Specifically, we are evaluating seal integrity of the Partnership's Pump Canyon Enhanced Coalbed Methane- CO2 Storage Demonstration, located in the San Juan Basin, New Mexico. The caprock at this site is the Kirtland Formation. This formation is composed of a variety of continental deposits (sandstones, siltstones, mudrocks, and shales) and is ideal for investigating the capability of helium to characterize sealing integrity of a very heterogeneous caprock. We present results of analyses of noble gases and a variety of petrological and petrophysical analyses on core through this caprock. These results are used to investigate the presence of imperfections and their potential impact on CO2 migration and the overall viability of utilizing natural helium as a screening tool. The authors gratefully acknowledge the U.S. Department of Energy and the National Energy Technology Laboratory for sponsoring this project. © 2009 Elsevier Ltd. All rights reserved.

More Details

Nanoconfined water in magnesium-rich 2:1 phyllosilicates

Proposed for publication in the Journal of the American Chemical Society.

Greathouse, Jeffery A.; Cygan, Randall T.; Durkin, Justin S.; Nenoff, Tina M.; Ockwig, Nathan O.

Inelastic neutron scattering, density functional theory, ab initio molecular dynamics, and classical molecular dynamics were used to examine the behavior of nanoconfined water in palygorskite and sepiolite. These complementary methods provide a strong basis to illustrate and correlate the significant differences observed in the spectroscopic signatures of water in two unique clay minerals. Distortions of silicate tetrahedra in the smaller-pore palygorskite exhibit a limited number of hydrogen bonds having relatively short bond lengths. However, without the distorted silicate tetrahedra, an increased number of hydrogen bonds are observed in the larger-pore sepiolite with corresponding longer bond distances. Because there is more hydrogen bonding at the pore interface in sepiolite than in palygorskite, we expect librational modes to have higher overall frequencies (i.e., more restricted rotational motions); experimental neutron scattering data clearly illustrates this shift in spectroscopic signatures. It follows that distortions of the silicate tetrahedra in these minerals effectively disrupt hydrogen-bonding patterns at the silicate?water interface, and this has a greater impact on the dynamical behavior of nanoconfined water than the actual size of the pore or the presence of coordinatively unsaturated magnesium edge sites.

More Details

Xyce Parallel Electronic Simulator : reference guide, version 4.1

Keiter, Eric R.; Mei, Ting; Russo, Thomas V.; Pawlowski, Roger; Schiek, Richard; Santarelli, Keith R.; Coffey, Todd S.; Thornquist, Heidi K.

This document is a reference guide to the Xyce Parallel Electronic Simulator, and is a companion document to the Xyce Users Guide. The focus of this document is (to the extent possible) exhaustively list device parameters, solver options, parser options, and other usage details of Xyce. This document is not intended to be a tutorial. Users who are new to circuit simulation are better served by the Xyce Users Guide.

More Details

Xyce Parallel Electronic Simulator : users' guide, version 4.1

Keiter, Eric R.; Mei, Ting; Russo, Thomas V.; Pawlowski, Roger; Schiek, Richard; Santarelli, Keith R.; Coffey, Todd S.; Thornquist, Heidi K.

This manual describes the use of the Xyce Parallel Electronic Simulator. Xyce has been designed as a SPICE-compatible, high-performance analog circuit simulator, and has been written to support the simulation needs of the Sandia National Laboratories electrical designers. This development has focused on improving capability over the current state-of-the-art in the following areas: (1) Capability to solve extremely large circuit problems by supporting large-scale parallel computing platforms (up to thousands of processors). Note that this includes support for most popular parallel and serial computers. (2) Improved performance for all numerical kernels (e.g., time integrator, nonlinear and linear solvers) through state-of-the-art algorithms and novel techniques. (3) Device models which are specifically tailored to meet Sandia's needs, including some radiation-aware devices (for Sandia users only). (4) Object-oriented code design and implementation using modern coding practices that ensure that the Xyce Parallel Electronic Simulator will be maintainable and extensible far into the future. Xyce is a parallel code in the most general sense of the phrase - a message passing parallel implementation - which allows it to run efficiently on the widest possible number of computing platforms. These include serial, shared-memory and distributed-memory parallel as well as heterogeneous platforms. Careful attention has been paid to the specific nature of circuit-simulation problems to ensure that optimal parallel efficiency is achieved as the number of processors grows. The development of Xyce provides a platform for computational research and development aimed specifically at the needs of the Laboratory. With Xyce, Sandia has an 'in-house' capability with which both new electrical (e.g., device model development) and algorithmic (e.g., faster time-integration methods, parallel solver algorithms) research and development can be performed. As a result, Xyce is a unique electrical simulation capability, designed to meet the unique needs of the laboratory.

More Details
Results 75826–75850 of 99,299
Results 75826–75850 of 99,299