Publications

Results 96501–96550 of 99,299

Search results

Jump to search filters

Development, characterization, and applications of high temperature superconductor nanobridge Josephson junctions

Wendt, Joel R.

A well-controlled, high-yield Josephson junction process in high temperature superconductors (HTS) is necessary for the demonstration of ultra-high-speed devices and circuits which exceed the capabilities of conventional electronics. The authors developed nanobridge Josephson junctions in high quality thin-film YBaCuO with dimensions below 100 nm fabricated using electron-beam nanolithography. They characterized this Josephson junction technology for process yield, junction parameter uniformity, and overall applicability for use in high-performance circuits. To facilitate the determination of junction parameters, they developed a measurement technique based on spectral analysis in the range of 90--160 GHz of phase-locked, oscillating arrays of up to 2,450 Josephson junctions. Because of the excellent yield and uniformity of the nanobridge junctions, they successfully applied the junction technology to a wide variety of circuits. These circuits included transmission-line pulse formers and 32 and 64-bit shift registers. The 32-bit shift register was shown to operate at clock speeds near 100 GHz and is believed to be one of the faster and more complex digital circuit demonstrated to date using high temperature superconductor technology.

More Details

Renewable energy technology development at Sandia National Laboratories

Klimas, P.C.

The use of renewable energy technologies is typically thought of as an integral part of creating and sustaining an environment that maximizes the overall quality of life of the Earths present inhabitants and does not leave an undue burden on future generations. Sandia National Laboratories has been a leader in developing many of these technologies over the last two decades. This paper describes innovative solar, wind and geothermal energy systems and components that Sandia is helping to bring to the marketplace. A common but special aspect of all of these activities is that they are conducted in partnership with non-federal government entities. A number of these partners are from New Mexico.

More Details

Manufacturing feasibility of several lead-free solders for electronic assembly

Vianco, Paul T.

This paper reports on a surface mount assembly evaluation with a series of existing lead-free solders. The wettability of the lead-free solders under investigation was measured by the meniscometer/wetting balance technique. This data provided an initial screening assessment of viable candidates for prototype development. Assembly process capability was based on visual, mechanical and metallurgical analyses of prototype circuit boards. The study demonstrated the feasibility of using several of the lead-free solders tested in a surface mount application and identified specific areas (e.g., paste formulation, board finishes, reflow parameters) for improving the manufacturing performance.

More Details

Robot trajectory planning via dynamic programming

Dohrmann, Clark R.

The method of dynamic programming is applied to three example problems dealing with robot trajectory planning. The first two examples involve end-effector tracking of a straight line with rest-to-rest motions of planar two-link and three-link rigid robots. These examples illustrate the usefulness of the method for producing smooth trajectories either in the presence or absence of joint redundancies. The last example demonstrates the use of the method for rest-to-rest maneuvers of a single-link manipulator with a flexible payload. Simulation results for this example display interesting symmetries that are characteristic of such maneuvers. Details concerning the implementation and computational aspects of the method are discussed.

More Details

Correlation, functional analysis and optical pattern recognition

Dickey, Fred M.

Correlation integrals have played a central role in optical pattern recognition. The success of correlation, however, has been limited. What is needed is a mathematical operation more complex than correlation. Suitably complex operations are the functionals defined on the Hilbert space of Lebesgue square integrable functions. Correlation is a linear functional of a parameter. In this paper, we develop a representation of functionals in terms of inner products or equivalently correlation functions. We also discuss the role of functionals in neutral networks. Having established a broad relation of correlation to pattern recognition, we discuss the computation of correlation functions using acousto-optics.

More Details

Techniques for the evaluation of outgassing from polymeric wafer pods

Mcintyre, D.C.

In recent years there has been increasing interest in using wafer-level isolation environments or pods (microenvironments) to provide a more controllable, cleaner wafer environment during wafer processing. It has been shown that pods can be effective in reducing the amount of particulate contamination on wafers during manufacturing. However, there have also been studies that indicate that pods and wafer boxes can be the source of condensible, molecular organic contamination. This paper summarizes the work that has been performed during the past year at Sandia National Laboratories` Contamination Free Manufacturing Research Center (CFMRC) on (1) devising standard, low-temperature, high sensitivity techniques to detect outgassing of volatile organic compounds (VOCs) from polymers used to construct wafer pods and (2) development of a technique that can be used to continuously measure the condensible contamination within pods so that the pod environment can be monitored during manufacturing. Although these techniques have been developed specifically for assessing contamination threats from wafer pods, they can be used to evaluate other potential contamination sources. The high sensitivity outgassing techniques can be used to evaluate outgassing of volatiles from other clean-room materials and the real-time outgassing sensor can be used to monitor contamination condensation in non-pod environments such as ballroom-type cleanrooms and minienvironments.

More Details

Wafer-level pulsed-DC electromigration response at very high frequencies

Pierce, D.G.

DC and pulsed-DC electromigration tests were performed at the Wafer-Level Pulsed-DC Electromigration Response and pulsed-DC electromigration tests were performed at the wafer level using standard and self-stressing test structures. DC characterization tests over a very large temperature range (180 to 560{degrees}C) were consistent with an interface diffusion mechanism in parallel with lattice diffusion. That data allowed for extraction of the respective activation energies and the diffusion coefficient of the rapid mechanism. The ability to extract simultaneously a defect-based diffusion coefficient and activation energy is significant given the extreme difficulty in making those measurements in aluminum. The pulsed-DC experiments were conducted over a range that includes the highest frequency to date, from DC to 500 MHz. Measurements were also made as a function of duty factor from 15% to 100% at selected frequencies. The data shows that the pulsed-DC lifetime is consistent with the average current density model at high (> 10 MHz) frequencies and showed no additional effects at the highest frequency tested (500 MHz). At low frequencies, we attribute the lessened enhancement to thermal effects rather than vacancy relaxation effects. Finally, the deviation in lifetime from the expected current density dependence, characterized over 1{1/2} orders of magnitude in current density, is explained in terms of a shift in the boundary condition for electromigration as the current density is decreased.

More Details

Software Use Control

Trussell, F.G.

The topic of this technical presentation is Use Control Software. The nuclear weapon software design community is being subjected to many surety forces that are stretching the envelope of their designs. Given that software is a critical part of the use control system design, we must work to limit the errors of the software development process. The objective of this paper is to discuss a methodology that the author, as a member of the Security and Use Control Assessment Department, is working on. This is the first introduction of the proposed methodology. Software that is a part of any use control system, subsystem, device, or component is critical to the operation of that apparatus. The software is expected to meet the criteria of modern software quality. In a use control application, meeting the normal quality standards is short of the expectations in meeting the use control obligations. The NWC community expects the use control features of a nuclear weapon to provide assurance that the weapon is protected from unauthorized nuclear detonation. The methodology that the author is proposing will provide a focused scrutiny to software that is used in the hardware of use control systems, subsystems, devices, and components. The methodology proposes further scrutiny of the structure of the software, memory, variables, storage, and control features.

More Details

Hydrogeological influences on radionuclide migration from the major radioactive waste burial sites at Chernobyl (A review)

Waters, Robert D.

This paper summarizes the recent hydrogeological investigations of several research organizations on waste confinement at the major radioactive waste (RW) burial sites immediately adjacent to the Chernobyl Nuclear Power Plant (Ch. NPP). Hydrogeological conditions and radiologic ground-water contamination levels are described. Ongoing ground-water monitoring practices are evaluated. The chemical and physical characteristics of the radionuclides within the burial sites are considered. Ground water and radionuclide transport modeling studies related to problems of the RW disposal sites are also reviewed. Current concerns on future impacts of the RW burial sites on the hydrological environment and water resources of the Ch.NPP area are discussed.

More Details

Airbags to Martian Landers: Analyses at Sandia National Laboratories

Gwinn, Kenneth W.

A new direction for the national laboratories is to assist US business with research and development, primarily through cooperative research and development agreements (CRADAs). Technology transfer to the private sector has been very successful as over 200 CRADAs are in place at Sandia. Because of these cooperative efforts, technology has evolved into some new areas not commonly associated with the former mission of the national laboratories. An example of this is the analysis of fabric structures. Explicit analyses and expertise in constructing parachutes led to the development of a next generation automobile airbag; which led to the construction, testing, and analysis of the Jet Propulsion Laboratory Mars Environmental Survey Lander; and finally led to the development of CAD based custom garment designs using 3D scanned images of the human body. The structural analysis of these fabric structures is described as well as a more traditional example Sandia with the test/analysis correlation of the impact of a weapon container.

More Details

Interactive Collaborative Environments (ICE): Platform independent X application sharing and multi-media over wide area networks

Lin, Han W.

Platform-independent Interaction Collaborative Environments (ICE) technologies include support for simultaneous display and control of unmodified X application software by two or more people, at separate locations, using different workstation hardware. Audio and video provide remote collaborators with the ability to discuss what they are all simultaneously seeing on their workstations. Remote pointing and marking capabilities are also provided independent of the application. The authors briefly describe their X application sharing work, and requirements for supporting tools, including multi-media. Finally they review some of the pilot project network applications of their work to robotics and manufacturing environments.

More Details

SEAMIST{trademark} in-situ instrumentation and vapor sampling system applications in the Sandia Mixed Waste Landfill Integrated Demonstration Program

Williams, Cecelia V.

The SEAMIST{trademark} inverting membrane deployment system has been used successfully at the Mixed Waste Landfill Integrated Demonstration (MWLID) for multipoint vapor sampling/pressure measurement/permeability measurement/sensor integration demonstrations and borehole lining. Several instruments were deployed inside the SEAMIST{trademark} lined boreholes to detect metals, radionuclides, moisture, and geologic variations. The liner protected the instruments from contamination, maintained support of the uncased borehole wall, and sealed the total borehole from air circulation. The current activities have included the installation of three multipoint vapor sampling systems and sensor integration systems in 100-foot-deep vertical boreholes. A long term pressure monitoring program has recorded barometric pressure effects at depth with relatively high spatial resolution. The SEAMIST{trademark} system has been integrated with a variety of hydrologic and chemical sensors for in-situ measurements, demonstrating its versatility as an instrument deployment system which allows easy emplacement and removal. Standard SEAMIST{trademark} vapor sampling systems were also integrated with state-of-the-art VOC analysis technologies (automated GC, UV laser fluorometer). The results and status of these demonstration tests are presented.

More Details

Automated cleaning of electronic components

Drotning, William D.

Environmental and operator safety concerns are leading to the elimination of trichloroethylene (TCE) and chlorofluorocarbon (CFC) solvents in electronic component cleaning processes that remove rosin flux, organic and inorganic contamination, and particulates. Present processes depend heavily on these solvents for manual spray cleaning of small components and subassemblies. Use of alternative solvent systems can lead to longer processing times and reduced quality. Automated spray cleaning can improve the quality of the cleaning process, thus enabling the productive use of environmentally conscious materials, while minimizing personnel exposure to hazardous materials. In addition, the use of robotic and automated systems can reduce the manual handling of parts that necessitates additional cleaning. We describe the development of a prototype robotic system for cleaning electronic components in a spray cleaning workcell. An important feature of the prototype system is the capability to generate the robot paths and motions automatically from the CAD models of the part to be cleaned, and to embed cleaning process knowledge into the automatically programmed operations.

More Details

Sandia National Laboratories interactions with organizations in the Former Soviet Union

Whiting, G.H.

This document describes Sandia National Laboratories involvement with scientists and engineers at various organizations within the states of the Former Soviet Union (FSU). The purpose of these interactions is twofold: first, to acquire technical information to enhance United States technology and second, to assist FSU states in converting their defense-oriented industry to civilian, market- oriented business.

More Details

Feasibility of permeation grouting for constructing subsurface barriers

Dwyer, Brian P.

The technical feasibility of emplacing a barrier beneath a waste site using directionally drilled boreholes and permeation grouting was investigated. The benefits of this emplacement system are: (1) Directionally drilled boreholes provide access beneath a waste site without disturbing the waste; (2) interim containment of contaminants allows time for the development of remediation options; (3) in the interim, the volume of waste remains fixed; (4) barriers may enhance the effectiveness of in situ remediation actions; and (5) barrier systems may provide permanent waste containment .

More Details

The Solar Thermal Design Assistance Center report of its activities and accomplishments in Fiscal Year 1993

Menicucci, D.F.

The Solar Thermal Design Assistance Center (STDAC) at Sandia National Laboratories is a resource provided by the US Department of Energy`s Solar Thermal Program. Its major objectives are to accelerate the use of solar thermal systems through (a) direct technical assistance to users, (b) cooperative test, evaluation, and development efforts with private industry, and (c) educational outreach activities. This report outlines the major activities and accomplishments of the STDAC in Fiscal Year 1993. The report also contains a comprehensive list of persons who contacted the STDAC by telephone for information or technical consulting.

More Details

Assessment of an active dry barrier for a landfill cover system

Stormont, John C.

A dry barrier is a layer of geologic material that is dried by air flow. An active dry barrier system can be designed, installed, and operated as part of a landfill cover system. An active system uses blowers and fans to move air through a high-permeability layer within the cover system. Depending principally on the air-flow rate, it is possible for a dry barrier to remove enough water to substantially reduce the likelihood of water percolating through the cover system. If a material with a relatively great storage capacity, such as processed tuff, is used as the coarse layer, then the efficiency of the dry barrier will be increased.

More Details

Perspectives on reactor safety

Camp, Allen L.; Haskin, F.E.

The US Nuclear Regulatory Commission (NRC) maintains a technical training center at Chattanooga, Tennessee to provide appropriate training to both new and experienced NRC employees. This document describes a one-week course in reactor, safety concepts. The course consists of five modules: (1) historical perspective; (2) accident sequences; (3) accident progression in the reactor vessel; (4) containment characteristics and design bases; and (5) source terms and offsite consequences. The course text is accompanied by slides and videos during the actual presentation of the course.

More Details

Risk assessment for the intentional depressurization strategy in PWRs

Camp, Susan E.

An accident management strategy has been proposed in which the reactor coolant system is intentionally depressurized during an accident. The aim is to reduce the containment pressurization that would result from high pressure ejection of molten debris at vessel breach. Probabilistic risk assessment (PRA) methods were used to evaluate this strategy for the Surry nuclear power plant. Sensitivity studies were conducted using event trees that were developed for the NUREG-1150 study. It was found that depressurization (intentional or unintentional) had minimal impact on the containment failure probability at vessel breach for Surry because the containment loads assessed for NUREG-1150 were not a great threat to the containment survivability. An updated evaluation of the impact of intentional depressurization on the probability of having a high pressure melt ejection was then made that reflected analyses that have been performed since NUREG-1150 was completed. The updated evaluation confirmed the sensitivity study conclusions that intentional depressurization has minimal impact on the probability of a high pressure melt ejection. The updated evaluation did show a slight benefit from depressurization because depressurization delayed core melting, which led to a higher probability of recovering emergency core coolant injection, thereby arresting the core damage.

More Details

1993 triggered lighnting test program: Environments within 20 meters of the lighting channel and small area temporary protection concepts

Fisher, R.J.

Vertical electric fields, azimuthal magnetic fields, and earth step potentials at ground level have been measured at 10 and 20 meters from the base of triggered lightning flashes. For incident stroke peak currents in the range of 4.4 to 29 kA, vertical electric field change amplitudes as high as 210 kV/m were observed at 10 m, with rise times of the order of a few microseconds. Magnetic fields were found to follow Ampere`s law closely at both 10 and 20 m. Earth step potentials measured over a 0.5-m radial distance at the 10-m and 20m stations were linear with and had the same waveforms as the stroke currents. The step voltages exhibited a l/r distance dependence between the two measurement distances. A model that incorporates the presence of a thin surface layer, due to rain water saturation, of much higher conductivity than the bulk of the underlying earth is proposed to explain the observed behavior. Tests were also carried out to evaluate the effectiveness of several concepts for protecting a small exposed object, such as a piece of ordnance at the site of a transportation accident, from either a direct strike or from the indirect effects of electromagnetic fields produced by a nearby lightning flash to ground. Photographs of the occurrence of significant radial filamentary arcing along the surface of the ground from the strike points were acquired. This type of arcing, with a maximum radial extent of at least 20 m, was observed on six of seven of triggered flashes and on all strokes of 15-kA peak amplitude or higher.

More Details

Shock characterization of quartz phenolic composite

Weirick, L.J.

Goal was to obtain dynamic mechanical property data on a quartz phenolic (abbreviated QP) composite. Shock loading and shock release measurements have been conducted using impact techniques utilizing both a light-gas gun and a powder gun at impact pressures up to 20 GPa. The primary diagnostic tool used was a velocity interferometer. The data analysis includes Hugoniot measurements to give both pressure-particle velocity and shock velocity-particle velocity relationships; spall measurements to determine the fracture stress at which the material spells; and attenuation measurements to determine the shock attenuation with material thickness. The QP Hugoniot relationship was found to be significantly different than that of a phenolic without a filler material indicating that the impedance of the QP used in this investigation was higher. The spall strength was measured to be {approximately}0.075 GPa, similar to nonfilled phenolic, which indicated that the presence of quartz fibers was not contributing to the fracture strength. The material was found to attenuate an imposed shock of approximately 6.3 GPa pressure and 0.18 {mu}s to 50% of the initial impact value after a propagation distance of 7mm.

More Details

Plane Shock Generator Explosive Lens: Shock characterization of 4340 and PH13-8Mo steels, C360 brass and PZT 65/35 ferro-electric ceramic

Weirick, L.J.

Sandia National Laboratories is currently involved in the optimization of a Plane Shock Generator Explosive Lens (PSGEL). The PSGEL component consists of a detonator, explosive, brass cone and tamper housing. The purpose of the PSGEL component is to transmit a plane shock wave through the 4340 steel bulkhead (wave separator) which has a ferro-electric (PZT)ceramic disk attached to the opposite surface of the steel bulkhead. The planar shock wave depolarizes the PZT 65/35 ferro-electric ceramic to produce an electrical output. One aspect of the optimization program involves the possible replacement of 4340 steel with PH13-8Mo steel for the bulkhead. These materials, as well as the PZT 65/35 ferro-electric ceramic and the brass for the cone, required the stock characterization with respect to Hugoniot parameters. The work presented here gives the shock Hugoniot values for these four materials and documents their measurements.

More Details

CIRCE2/DEKGEN2: A software package for facilitated optical analysis of 3-D distributed solar energy concentrators. Theory and user manual

Romero, Vicente J.

CIRCE2 is a computer code for modeling the optical performance of three-dimensional dish-type solar energy concentrators. Statistical methods are used to evaluate the directional distribution of reflected rays from any given point on the concentrator. Given concentrator and receiver geometries, sunshape (angular distribution of incident rays from the sun), and concentrator imperfections such as surface roughness and random deviation in slope, the code predicts the flux distribution and total power incident upon the target. Great freedom exists in the variety of concentrator and receiver configurations that can be modeled. Additionally, provisions for shading and receiver aperturing are included.- DEKGEN2 is a preprocessor designed to facilitate input of geometry, error distributions, and sun models. This manual describes the optical model, user inputs, code outputs, and operation of the software package. A user tutorial is included in which several collectors are built and analyzed in step-by-step examples.

More Details

Results of brine flow testing and disassembly of a crushed salt/bentonite block seal at the Waste Isolation Pilot Plant

Finley, Ray E.

The Small-Scale Seal Performance Tests, Series C, a set of in situ experiments conducted at the Waste Isolation Pilot Plant, are designed to evaluate the performance of various seal materials emplaced in large (0.9-m-diameter) boreholes. This report documents the results of fluid (brine) flow testing and water and clay content analyses performed on one emplaced seal comprised of 100% salt blocks and 50%/50% crushed salt/bentonite blocks and disassembled after nearly three years of brine injection testing. Results from the water content analyses of 212 samples taken from within this seal show uniform water content throughout the 50%/50% salt/bentonite blocks with saturations about 100%. Clay content analyses from the 100% salt endcaps of the seal show a background clay content of about 1% by weight uniformly distributed, with the exception of samples taken at the base of the seal at the borehole wall interface. These samples show clay contents up to 3% by weight, which suggests some bentonite may have migrated under pressure to that interface. Results of the brine-flow testing show that the permeability to brine for this seal was about 2 to 3 {times} 10{sup {minus}4} darcy (2 to 3 {times} 10{sup {minus}16} m{sup 2}).

More Details

Heterogeneous reaction mechanisms and kinetics relevant to the CVD of semiconductor materials

Creighton, James R.

This report documents the state of the art in experimental and theoretical techniques for determining reaction mechanisms and chemical kinetics of heterogeneous reactions relevant to the chemical vapor deposition of semiconductor materials. It summarizes the most common ultra-high vacuum experimental techniques that are used and the types of rate information available from each. Several case studies of specific chemical systems relevant to the microelectronics industry are described. Theoretical methods for calculating heterogeneous reaction rate constants are also summarized.

More Details

The in situ permeable flow sensor: A device for measuring groundwater flow velocity

Ballard, Sanford

A new technology called the In Situ Permeable Flow Sensor has been developed at Sandia National Laboratories. These sensors use a thermal perturbation technique to directly measure the direction and magnitude of the full three dimensional groundwater flow velocity vector in unconsolidated, saturated, porous media. The velocity measured is an average value characteristic of an approximately 1 cubic meter volume of the subsurface. During a test at the Savannah River Site in South Carolina, two flow sensors were deployed in a confined aquifer in close proximity to a well which was screened over the entire vertical extent of the aquifer and the well was pumped at four different pumping rates. In this situation horizontal flow which is radially directed toward the pumping well is expected. The flow sensors measured horizontal flow which was directed toward the pumping well, within the uncertainty in the measurements. The observed magnitude of the horizontal component of the flow velocity increased linearly with pumping rate, as predicted by theoretical considerations. The measured horizontal component of the flow velocity differed from the predicted flow velocity, which was calculated with the assumptions that the hydraulic properties of the aquifer were radially homogeneous and isotropic, by less than a factor of two. Drawdown data obtained from other wells near the pumping well during the pump test indicate that the hydraulic properties of the aquifer are probably not radially homogeneous but the effect of the inhomogeneity on the flow velocity field around the pumping well was not modeled because the degree and distribution of the inhomogeneity are unknown. Grain size analysis of core samples from wells in the area were used to estimate the vertical distribution of hydraulic conductivity.

More Details

Vacuum cleaner modifications leading to reduced ESD hazards

Jones, R.D.; Chen, K.C.; Holmes, S.W.

After a series of meetings held in response to an Unsatisfactory Report on the use of vacuum cleaners, an experimental study of commonly available vacuum cleaners was conducted. The object of the study was to evaluate the effectiveness of the cleaners as electrostatic generators. The electrical charges generated by the machine can inadvertently be transferred in normal operations to electroexplosive devices (EEDs), thereby creating a potentially hazardous situation. In the course of this study, it was determined that many inexpensive commercial cleaners could be used safely providing certain modifications were made. Details of the required modification and rationale for the modification are presented in this report.

More Details

Integrated Engineering Information Technology, FY93 accommplishments

Harris, R.N.; Miller, D.K.; Neugebauer, G.L.; Orona, J.R.; Partridge, R.A.; Herman, J.D.

The Integrated Engineering Information Technology (IEIT) project is providing a comprehensive, easy-to-use computer network solution or communicating with coworkers both inside and outside Sandia National Laboratories. IEIT capabilities include computer networking, electronic mail, mechanical design, and data management. These network-based tools have one fundamental purpose: to help create a concurrent engineering environment that will enable Sandia organizations to excel in today`s increasingly competitive business environment.

More Details

An analysis of smoothed particle hydrodynamics

Swegle, Jeffrey W.

SPH (Smoothed Particle Hydrodynamics) is a gridless Lagrangian technique which is appealing as a possible alternative to numerical techniques currently used to analyze high deformation impulsive loading events. In the present study, the SPH algorithm has been subjected to detailed testing and analysis to determine its applicability in the field of solid dynamics. An important result of the work is a rigorous von Neumann stability analysis which provides a simple criterion for the stability or instability of the method in terms of the stress state and the second derivative of the kernel function. Instability, which typically occurs only for solids in tension, results not from the numerical time integration algorithm, but because the SPH algorithm creates an effective stress with a negative modulus. The analysis provides insight into possible methods for removing the instability. Also, SPH has been coupled into the transient dynamics finite element code PRONTO, and a weighted residual derivation of the SPH equations has been obtained.

More Details

Reentry safety for the Topaz II Space Reactor: Issues and analyses

Connell, Leonard W.

This report documents the reentry safety analyses conducted for the TOPAZ II Nuclear Electric Propulsion Space Test Program (NEPSTP). Scoping calculations were performed on the reentry aerothermal breakup and ground footprint of reactor core debris. The calculations were used to assess the risks associated with radiologically cold reentry accidents and to determine if constraints should be placed on the core configuration for such accidents. Three risk factors were considered: inadvertent criticality upon reentry impact, atmospheric dispersal of U-235 fuel, and the Special Nuclear Material Safeguards risks. Results indicate that the risks associated with cold reentry are very low regardless of the core configuration. Core configuration constraints were therefore not established for radiologically cold reentry accidents.

More Details

Thermal performance of a depleted uranium shielded storage, transportation, and disposal package

Wix, Steven D.

The US Department of Energy (DOE) is responsible for management and disposal of large quantities of depleted uranium (DU) in the DOE complex. Viable economic options for the use and eventual disposal of the material are needed. One possible option is the use of DU as shielding material for vitrified Defense High-Level Waste (DHLW) storage, transportation, and disposal packages. Use of DU as a shielding material provides the potential benefit of disposing of significant quantities of DU during the DHLW storage and disposal process. Two DU package concepts have been developed by Sandia National Laboratories. The first concept is the Storage/Disposal plus Transportation (S/D+T) package. The S/D+T package consists of two major components: a storage/disposal (S/D) container and a transportation overpack. The second concept is the S/D/T package which is an integral storage, transportation, and disposal package. The package concept considered in this analysis is the S/D+T package with seven DHLW waste canisters. The S/D+T package provides shielding and containment for the DHLW waste canisters. The S/D container is intended to be used as an on-site storage and repository disposal container. In this analysis, the S/D container is constructed from a combination of stainless steel and DU. Other material combinations, such as mild steel and DU, are potential candidates. The transportation overpack is used to transport the S/D containers to a final geological repository and is not included in this analysis.

More Details

The bridge permeameter; An alternative method for single-phase, steady-state permeability measurements

Graf, Darin C.

Laboratory measurements of single-phase, steady-state permeability of porous rock are important for a number of different applications. The oil and gas industry uses permeability data as a key indicator of the producability of a hydrocarbon reservoir; effective containment of large volumes of oil in underground salt caverns is directly dependent upon the permeability of the adjacent cavern walls; and safe, long term underground isolation of radioactive and hazardous waste is contingent upon the flow and transport characteristics of the surrounding geologic formations. An alternative method for measuring single-phase, steady-state permeability of porous rock is presented. The use of troublesome and expensive mass flow meters is eliminated and replaced with a bridge configuration of flow resistors. Permeability values can be determined directly from differential pressures across the bridge network, resulting in potentially significant cost savings and simplification for conducting these types of measurements. Results from the bridge permeameter are compared with results obtained using conventional methods.

More Details

Applications of fiber optics in physical protection

Buckle, T.H.

The purpose of this NUREG is to provide technical information useful for the development of fiber-optic communications and intrusion detection subsystems relevant to physical protection. There are major sections on fiber-optic technology and applications. Other topics include fiber-optic system components and systems engineering. This document also contains a glossary, a list of standards and specifications, and a list of fiber-optic equipment vendors.

More Details

An evaluation of fiber optic intrusion detection systems in interior applications

Vigil, J.T.

This report discusses the testing and evaluation of four commercially available fiber optic intrusion detection systems. The systems were tested under carpet-type matting and in a vaulted ceiling application. This report will focus on nuisance alarm data and intrusion detection results. Tests were conducted in a mobile office building and in a bunker.

More Details

Summary of MELCOR 1.8.2 calculations for three LOCA sequences (AG, S2D, and S3D) at the Surry Plant

Kmetyk, Lubomyra N.

Activities involving regulatory implementation of updated source term information were pursued. These activities include the identification of the source term, the identification of the chemical form of iodine in the source term, and the timing of the source term`s entrance into containment. These activities are intended to support a more realistic source term for licensing nuclear power plants than the current TID-14844 source term and current licensing assumptions. MELCOR calculations were performed to support the technical basis for the updated source term. This report presents the results from three MELCOR calculations of nuclear power plant accident sequences and presents comparisons with Source Term code Package (STCP) calculations for the same sequences. The three low-pressure sequences were analyzed to identify the materials which enter containment (source terms) and are available for release to the environment, and to obtain timing of sequence events. The source terms include fission products and other materials such as those generated by core-concrete interactions. All three calculations, for both MELCOR and STCP, analyzed the Surry plant, a pressurized water reactor (PWR) with a subatmospheric containment design.

More Details

An assessment of leadership in geothermal energy technology research and development

Bruch, V.L.

Geothermal energy is one of the more promising renewable energy technologies because it is environmentally benign and, unlike most renewable energy sources, can provide base power. This report provides an assessment of the research and development (R&D) work underway in geothermal energy in the following countries: Denmark, France, Germany, Italy, Japan, Russia, and the United Kingdom. While the R&D work underway in the US exceeds the R&D efforts of the other countries, the lead is eroding. This erosion is due to reductions in federal government funding for geothermal energy R&D and the decline of the US petroleum industry. This erosion of R&D leadership is hindering commercialization of US geothermal energy products and services. In comparison, the study countries are promoting the commercialization of their geothermal energy products and services. As a result, some of these countries, in particular Japan, will probably have the largest share of the global market for geothermal energy products and services; these products and services being targeted toward the developing countries (the largest market for geothermal energy).

More Details

A two-level parallel direct search implementation for arbitrarily sized objective functions

Hutchinson, Scott A.

In the past, many optimization schemes for massively parallel computers have attempted to achieve parallel efficiency using one of two methods. In the case of large and expensive objective function calculations, the optimization itself may be run in serial and the objective function calculations parallelized. In contrast, if the objective function calculations are relatively inexpensive and can be performed on a single processor, then the actual optimization routine, itself may be parallelized. In this paper, a scheme based upon the Parallel Direct Search (PDS) technique is presented which allows the objective function calculations to be done on an arbitrarily large number (p2) of processors. If, p, the number of processors available, is greater than or equal to 2p{sub 2} then the optimization may be parallelized as well. This allows for efficient use of computational resources since the objective function calculations can be performed on the number of processors that allow for peak parallel efficiency and then further speedup may be achieved by parallelizing the optimization. Results are presented for an optimization problem which involves the solution of a PDE using a finite-element algorithm as part of the objective function calculation. The optimum number of processors for the finite-element calculations is less than p/2. Thus, the PDS method is also parallelized. Performance comparisons are given for a nCUBE 2 implementation.

More Details

Sidewall thermometry perturbations to nonlinear heat transport near the λ transition in 4He

Physica B: Physics of Condensed Matter

Duncan, R.V.

The effect of a sidewall thermometry probe on heat transport measurements in liquid 4He very close to the superfluid transition is simulated numerically. The effective thermal position of the probe changes with closeness of approach to the superfluid transition. The radial heat flux induced by the sidewall probe is calculated for specific probe designs. © 1994.

More Details

Photopumped X-ray laser research on saturn

Proceedings of SPIE - The International Society for Optical Engineering

Nash, Thomas J.

Using Saturn as a driver, we are pursueing both photoresonantly pumped andphotoionization/recombination lasers. Our lasing targets are gas cells with thin windowsthat are pumped by a z pinch 2 cm away radiating 10 TW. In both schemes the lasant and gasfill is neon. We will present evidence for inversion in the sodium/neon photoresonantscheme but we have yet to detect the lasing transition itself. To increase our chances ofmeasuring this line we have introduced potassium into a sodium z-pinch and have eliminatedoxygen from the gas cell windows. We have measured the spatial dependence of ionizationbalance across the gas cell, and this measurement is consistent with propagation of a shockfront across the gas cell target. We have measured the Li-like neon Sf-3d transition toincrease more rapidly with fill pressure than all other measured lines. Based on this resultwe have performed experiments emphasizing the photoionization/recombination laserscheme that use a flat field grazing incidence spectrometer to provide good spatial resolutionof the 4f-3d, 4d-3p, and Sf-3d lines of Li-like neon. We have attempted a gain lengthmeasurement by imaging parallel to a baffle that varies the length of the target illuminated.

More Details

Fusion welding of advanced borated stainless steels. Final report: CRADA No. CR1042

Robino, Charles V.

This work addressed two major areas concerning joining of advanced borated stainless steels. These areas included the development of a understanding of the physical metallurgy of borated stainless steels and the development of welding processes and post-weld heat treatments for these alloys. Differential thermal analysis experiments were conducted on ten heats of borated stainless steel to determine the transformation temperatures and melting behavior of the alloys. On-heating solidus temperatures were measured for all of the alloys and were used to define the temperatures associated with the fusion line during welding. Isothermal heat treatments designed to evaluate the effects of elevated temperature exposures on the toughness of the borated grades were conducted. These tests were used to determine if significant changes in the microstructure or mechanical properties of weld heat-affected zones (HAZ) occur. Specifically, the tests addressed the solid-state region of the HAZ. The test matrix included a variety of alloy compositions and thermal exposures at temperatures near the on-heating solidus (as determined by the DTA experiments). Welding experiments designed to assess the mechanical properties and microstructure of gas-tungsten arc and electron beam welds were conducted.

More Details

Second-order structural identification procedure via state-space-based system identification

AIAA Journal

Alvin, Kenneth F.; Park, K.C.

We present a theory for transforming the system-theory-based realization models into the corresponding physical coordinate-based structural models. The theory has been implemented into computational procedure and applied to several example problems. Our results show that the present transformation theory yields an objective model basis possessing a unique set of structural parameters from an infinite set of equivalent system realization models. For proportionally damped systems, the transformation directly and systematicaly yields the normal modes and modal damping. Moreover, when nonproportional damping is present, the relative magnitude and phase of the damped mode shapes are separately characterized, and a corrective transformation is then employed to capture the undamped normal modes and nondiagonal modal damping matrix.

More Details

MELCOR 1.8.2 assessment: Surry PWR TMLB` (with a DCH study)

Kmetyk, Lubomyra N.

MELCOR is a fully integrated, engineering-level computer code, being developed at Sandia National Laboratories for the USNRC. This code models the entire spectrum of severe accident phenomena in a unified framework for both BWRs and PWRs. As part of an ongoing assessment program, the MELCOR computer code has been used to analyze a station blackout transient in Surry, a three-loop Westinghouse PWR. Basecase results obtained with MELCOR 1.8.2 are presented, and compared to earlier results for the same transient calculated using MELCOR 1.8.1. The effects of new models added in MELCOR 1.8.2 (in particular, hydrodynamic interfacial momentum exchange, core debris radial relocation and core material eutectics, CORSOR-Booth fission product release, high-pressure melt ejection and direct containment heating) are investigated individually in sensitivity studies. The progress in reducing numeric effects in MELCOR 1.8.2, compared to MELCOR 1.8.1, is evaluated in both machine-dependency and time-step studies; some remaining sources of numeric dependencies (valve cycling, material relocation and hydrogen burn) are identified.

More Details

Long-term sealing analyses for US Strategic Petroleum Reserve (SPR) caverns

Ehgartner, Brian L.

It is inevitable that sealing and abandonment will someday occur in a SPR cavern or caverns. To gain insight into the long-term behavior of a typical SPR cavern following sealing and abandonment, a suite of mechanical finite-element calculations was performed. The initial analyses predict how quickly and to what extent a cavern pressurizes after it is plugged. The analyses also examine the stability of the cavern as it changes shape due to the excessive pressures generated as the salt creeps and the brine in the cavern thermally expands. These large-scale analyses do not include the details of the plug but assume a good seal is established in the cavern wells. In another series of analyses, the potential for forming a leak at the plug is evaluated. A cement plug, emplaced in the casing seat of a cavern well, is loaded using the predicted brine pressures from the cavern analyses. The plugged casing analyses examine the potential for forming a leak path in and along the interfaces of salt, casing, and cement plug. In the last set of analysis, the dimensional scale of the problem is further reduced to examine a preexisting crack along a casing/salt interface. The cracked interface is assumed to be fluid filled and fully pressurized by the cavern fluids. The analyses address the potential for the fluid path to extend upwards along a plugged casing should an open microannulus surround the casing after it is plugged.

More Details

An application reference model for layered manufacturing

Kennicott, P.R.

The Intelligent Manufacturing Systems (IMS) Test Case 6 project (Rapid Product Development) was set up to demonstrate rapid product development and 3D measurement techniques where the agencies performing the work were distributed over different countries. Test Case 6 provided a unique opportunity to examine the process by which an application protocol (AP) of the Standard for Exchange of Product Data is prepared. The test case had a well defined scope, the production of simple parts by means of layered manufacturing techniques. The information concerned with this manufacture was similarly well defined, due to the requirement that the information be transmitted among the organizations participating in the test case. STEP is an international standard specifying the data content and format for storage and exchange of product data throughout the product`s life cycle. STEP has been under development since 1984 and is just now emerging as an International Standard. STEP is specified as a series of information models using the EXPRESS computer language. For purposes of data exchange, a mapping to a physical file format is specified. Informally, product data can be defined as all the data about a product which one might wish to save. This definition implies some variation in the amount of data to be saved in any one instance. In the case of Test Case 6, one would certainly wish to save the IGES files describing the part. One may or may not wish to save the manufacturing parameters. While there are many parts of STEP with different purposes, the important series of parts for the purposes of standardizing product data are those dealing with application protocols. An application protocol specifies the details of product data within the context of a single application (in this case, layered manufacturing). Other APs deal with such subjects as configuration-managed solid parts and associated drafting.

More Details

Natural sets in manipulation tasks

Brost, Randolph

A key feature distinguishing robotics from traditional computer science is its connection to the physical world. Robot planning software may use elegant algorithms supported by ironclad analytic proofs, but ultimately nature will decide whether the software output is correct in the sense of accomplishing the task goal. Thus a chief goal of robotics research is to understand and capture this nature in a way that allows algorithmic analysis to produce robust physical results. This is made particularly difficult by the presence of uncertainty, which arises from the inevitable discrepancy between the real task and its idealized computer model. This paper reviews fundamental sets of states, forces, and actions that exist for a broad class of robot manipulation tasks, and ties these sets to past and future approaches to developing robust manipulation planning and execution systems.

More Details

Reactor-pumped laser facility at DOE`s Nevada Test Site

Lipinski, Ronald

The Nevada Test Site (NTS) is one excellent possibility for a laser power beaming site. It is in the low latitudes of the US, is in an exceptionally cloud-free area of the southwest, is already an area of restricted access (which enhances safety considerations), and possesses a highly-skilled technical team with extensive engineering and research capabilities from underground testing of our nation`s nuclear deterrence. The average availability of cloud-free clear line of site to a given point in space is about 84%. With a beaming angle of {plus_minus}60{degree} from the zenith, about 52 geostationary-orbit (GEO) satellites could be accessed continuously from NTS. In addition, the site would provide an average view factor of about 10% for orbital transfer from low earth orbit to GEO. One of the major candidates for a long-duration, high-power laser is a reactor-pumped laser being developed by DOE. The extensive nuclear expertise at NTS makes this site a prime candidate for utilizing the capabilities of a reactor pumped laser for power beaming. The site then could be used for many dual-use roles such as industrial material processing research, defense testing, and removing space debris.

More Details

Computational methods for describing the laser-induced mechanical response of tissue

Trucano, Timothy G.

Detailed computational modeling of laser surgery requires treatment of the photoablation of human tissue by high intensity pulses of laser light and the subsequent thermomechanical response of the tissue. Three distinct physical regimes must be considered to accomplish this: (1) the immediate absorption of the laser pulse by the tissue and following tissue ablation, which is dependent upon tissue light absorption characteristics; (2) the near field thermal and mechanical response of the tissue to this laser pulse, and (3) the potential far field (and longer time) mechanical response of witness tissue. Both (2) and (3) are dependent upon accurate constitutive descriptions of the tissue. We will briefly review tissue absorptivity and mechanical behavior, with an emphasis on dynamic loads characteristic of the photoablation process. In this paper our focus will center on the requirements of numerical modeling and the uncertainties of mechanical tissue behavior under photoablation. We will also discuss potential contributions that computational simulations can make in the design of surgical protocols which utilize lasers, for example, in assessing the potential for collateral mechanical damage by laser pulses.

More Details

Semiconductor microcavity lasers

Gourley, Paul L.

New kinds of semiconductor microcavity lasers are being created by modern semiconductor technologies like molecular beam epitaxy and electron beam lithography. These new microcavities exploit 3-dimensional architectures possible with epitaxial layering and surface patterning. The physical properties of these microcavities are intimately related to the geometry imposed on the semiconductor materials. Among these microcavities are surface-emitting structures which have many useful properties for commercial purposes. This paper reviews the basic physics of these microstructured lasers.

More Details
Results 96501–96550 of 99,299
Results 96501–96550 of 99,299