Publications

Results 96401–96450 of 99,299

Search results

Jump to search filters

Modified Noise Power Ratio testing of high resolution digitizers

Mcdonald, Timothy S.

A broadband, full signal range, side-by-side (tandem) test method for estimating the internal noise performance of high resolution digitizers is described and illustrated. The technique involves a re-definition of the traditional Noise Power Ratio (NPR) test, a change that not only makes this test applicable to higher resolution systems than was previously practical, but also enhances its value and flexibility. Since coherence analysis is the basis of this new definition, and since the application of coherence procedures to high resolution data poses several problems, this report discusses these problems and their resolution.

More Details

A three-dimensional fast solver for arbitrary vorton distributions

Strickland, James H.

A method which is capable of an efficient calculation of the three-dimensional flow field produced by a large system of vortons (discretized regions of vorticity) is presented in this report. The system of vortons can, in turn, be used to model body surfaces, container boundaries, free-surfaces, plumes, jets, and wakes in unsteady three-dimensional flow fields. This method takes advantage of multipole and local series expansions which enables one to make calculations for interactions between groups of vortons which are in well-separated spatial domains rather than having to consider interactions between every pair of vortons. In this work, series expansions for the vector potential of the vorton system are obtained. From such expansions, the three components of velocity can be obtained explicitly. A Fortran computer code FAST3D has been written to calculate the vector potential and the velocity components at selected points in the flow field. In this code, the evaluation points do not have to coincide with the location of the vortons themselves. Test cases have been run to benchmark the truncation errors and CPU time savings associated with the method. Non-dimensional truncation errors for the magnitudes of the vector potential and velocity fields are on the order of 10{sup {minus}4}and 10{sup {minus}3} respectively. Single precision accuracy produces errors in these quantities of up to 10{sup {minus}5}. For less than 1,000 to 2,000 vortons in the field, there is virtually no CPU time savings with the fast solver. For 100,000 vortons in the flow, the fast solver obtains solutions in 1 % to 10% of the time required for the direct solution technique depending upon the configuration.

More Details

ETPRE User`s Manual Version 3.00

Roginski, R.J.

ETPRE is a preprocessor for the Event Progression Analysis Code EVNTRE. It reads an input file of event definitions and writes the lengthy EVNTRE code input files. ETPRE`s advantage is that it eliminates the error-prone task of manually creating or revising these files since their formats are quite elaborate. The user-friendly format of ETPRE differs from the EVNTRE code format in that questions, branch references, and other event tree components are defined symbolically instead of numerically. When ETPRE is executed, these symbols are converted to their numeric equivalents and written to the output files using formats defined in the EVNTRE Reference Manual. Revisions to event tree models are simplified by allowing the user to edit the symbolic format and rerun the preprocessor, since questions, branch references, and other symbols are automatically resequenced to their new values with each execution. ETPRE and EVNTRE have both been incorporated into the SETAC event tree analysis package.

More Details

Radiant heat testing of the H1224A shipping/storage container

Harding, David C.

H1224A weapons containers have been used for years by the Departments of Energy and Defense to transport and store W78 warhead midsections. Although designed to protect the midsections only from low-energy impacts, a recent transportation risk assessment effort has identified a need to evaluate the container`s ability to protect weapons in more severe accident environments. Four radiant heat tests were performed: two each on an H1224A container (with a Mk12a Mod 6c mass mock-up midsection inside) and two on a low-cost simulated H1224A container (with a hollow Mk12 aeroshell midsections inside). For each unit tested, temperatures were recorded at numerous points throughout the container and midsection during a 4-hour 121{degrees}C (250{degrees}F) and 30-minute 1010{degrees}C (1850{degrees}F) radiant environment. Measured peak temperatures experienced by the inner walls of the midsections as a result of exposure to the high-temperature radiant environment ranged from 650{degrees} C to 980{degrees} C (1200{degrees} F to 1800{degrees}F) for the H1224A container and 770 {degrees} to 990 {degrees}C (1420{degrees} F to 1810{degrees}F) for the simulated container. The majority of both containers were completely destroyed during the high-temperature test. Temperature profiles will be used to benchmark analytical models and predict warhead midsection temperatures over a wide range of the thermal accident conditions.

More Details

Large scale obscuration and related climate effects open literature bibliography

Zak, Bernard D.

More Details

Large Scale Obscuration and Related Climate Effects Workshop: Proceedings

Zak, Bernard D.

More Details

Primary Standards Laboratory report, 2nd half 1993

Levy, Walbert G.T.

The Primary Standards Laboratory (PSL) operates a system-wide primary standards and calibration program for the US Department of Energy, Albuquerque Field Office (DOE/AL). The PSL mission is as follows: to develop and maintain primary standards; to calibrate electrical, physical, and radiation reference standards for customer laboratories (DOE/AL nuclear weapon contractors); to conduct the technical surveys and measurement audits of these laboratories; and to recommend and implement system-wide improvements. This report summarizes activities of the PSL for the second half of 1993 and provides information pertinent to the operation of the DOE/AL Standards and Calibration Program. Specific areas covered include development projects, improvement projects, calibration and special measurements, surveys and audits, customer service, and significant events. Appendixes include certifications and reports;; a discussion about commercial calibration laboratories; PSL memoranda (PSLM); test numbers from the National Institute of Standards and Technology (NIST), formerly the National Bureau of Standards (NBS); and DOE/PSL memoranda on the Standards and Calibration Program with emphasis on traceability of PSL calibrations.

More Details

In situ evaporation of lithium for LEVIS ion source

Gerber, B.

This report describes the In Situ evaporation of pure lithium on the anode of PBFA II which then can be evaporated and ionized by Laser Evaporation and Ionization Source (LEVIS). Included in this report are the necessary calculations, light laboratory experiments and details of the hardware for PBFA II. This report gives all the details of In Situ evaporation for PBFA II so when a decision is made to provide an active lithium source for PBFA II, it can be fielded in a minimum of time.

More Details

Integrated environmentally compatible soldering technologies. Final report

Hosking, F.M.; Frear, D.R.; Iman, R.L.; Keicher, D.M.; Lopez, E.P.; Peebles, H.C.; Sorensen, N.R.; Vianco, P.T.

Chemical fluxes are typically used during conventional electronic soldering to enhance solder wettability. Most fluxes contain very reactive, hazardous constituents that require special storage and handling. Corrosive flux residues that remain on soldered parts can severely degrade product reliability. The residues are removed with chlorofluorocarbon (CFC), hydrochlorofluorocarbon (HCFC), or other hazardous solvents that contribute to ozone depletion, release volatile organic compounds into the atmosphere, or add to the solvent waste stream. Alternative materials and processes that offer the potential for the reduction or elimination of cleaning are being developed to address these environmental issues. Timing of the effort is critical, since the targeted chemicals will soon be heavily taxed or banned. DOE`s Office of Environmental Restoration and Waste Management (DOE/EM) has supported Sandia National Laboratories` Environmentally Conscious Manufacturing Integrated Demonstration (ECMID). Part of the ECM program involves the integration of several environmentally compatible soldering technologies for assembling electronics devices. Fluxless or {open_quotes}low-residue/no clean{close_quotes} soldering technologies (conventional and ablative laser processing, controlled atmospheres, ultrasonic tinning, protective coatings, and environmentally compatible fluxes) have been demonstrated at Sandia (SNL/NM), the University of California at Berkeley, and Allied Signal Aerospace-Kansas City Division (AS-KCD). The university demonstrations were directed under the guidance of Sandia staff. Results of the FY93 Soldering ID are presented in this report.

More Details

An annotated summary of the Information Model Design Procedure (IMDP)

Becker, S.D.

This presentation documents the essential elements of the IMDP as applied at Sandia National Laboratories/New Mexico. The IMDP is an adaptation of the Natural-Language Information Analysis Methodology (NIAM) of G. M. Nijssen. The underlying purpose of both of these methodologies is to provide a formal, reproducible, and verifiable approach to specifying the information requirements of an information system. The IMDP spans the specification process from initial scoping; through verbalization of problem-domain facts, specification of constraints, and subtype analysis; and finally to application of a formal algorithm for developing a fifth-normal-form relational database design.

More Details

Experiments to investigate direct containment heating phenomena with scaled models of the Zion Nuclear Power Plant in the Surtsey Test Facility

Allen, Mark S.

The Surtsey Facility at Sandia National Laboratories (SNL) is used to perform scaled experiments that simulate hypothetical high-pressure melt ejection (HPME) accidents in a nuclear power plant (NPP). These experiments are designed to investigate the effect of specific phenomena associated with direct containment heating (DCH) on the containment load, such as the effect of physical scale, prototypic subcompartment structures, water in the cavity, and hydrogen generation and combustion. In the Integral Effects Test (IET) series, 1:10 linear scale models of the Zion NPP structures were constructed in the Surtsey vessel. The RPV was modeled with a steel pressure vessel that had a hemispherical bottom head, which had a 4-cm hole in the bottom head that simulated the final ablated hole that would be formed by ejection of an instrument guide tube in a severe NPP accident. Iron/alumina/chromium thermite was used to simulate molten corium that would accumulate on the bottom head of an actual RPV. The chemically reactive melt simulant was ejected by high-pressure steam from the RPV model into the scaled reactor cavity. Debris was then entrained through the instrument tunnel into the subcompartment structures and the upper dome of the simulated reactor containment building. The results of the IET experiments are given in this report.

More Details

Characterization of latent-heat-storage salts for use in rechargeable sodium/sulfur batteries

Armijo, J.R.

The properties of candidate phase-change materials for use in a thermal management system for sodium/sulfur batteries were characterized. The experimental procedures used are presented along with a comprehensive description of the results. The principal properties were measured with differential scanning calorimetry and included heat-of-fusion and melting-point temperature. In addition, relevant thermal properties and compatibility with containment materials were studied. Recently, one of the salts studied was successfully incorporated into a prototype sodium/sulfur battery.

More Details

PROJECT 56 in retrospect

Jones, R.D.; Compton, M.L.; Hollister, J.F.

Nuclear weapons are designed to ensure that an accidental explosion will not result in a significant nuclear yield. In 1956 and again in 1960, a series of tests was conducted in the Coyote Test Field on Kirtland AFB to study the scattering of nuclear material from such an event. Simulated nuclear devices with depleted uranium were used in the tests.

More Details

Safety analysis of optically ignited explosive and pyrotechnic devices

Merson, John A.

The future of optical ordnance depends on the acceptance, validation and verification of the stated safety enhancement claims of optical ordnance over existing electrical explosive devices (EED`s). Sandia has been pursuing the development of optical ordnance, with the primary motivation of this effort being the enhancement of explosive safety by specifically reducing the potential of premature detonation that can occur with low energy electrically ignited explosive devices. By using semiconductor laser diodes for igniting these devices, safety improvements can be made without being detrimental to current system concerns since the inputs required for these devices are similar to electrical systems. Laser Diode Ignition (LDI) of the energetic material provides the opportunity to remove the bridgewire and electrically conductive pins from the charge cavity, creating a Faraday cage and thus isolating the explosive or pyrotechnic materials from stray electrical ignition sources. Recent results from our continued study of safety enhancements are presented. The areas of investigation which are presented include: (1) unintended optical source analysis, specifically lightning insensitivity, (2) electromagnetic radiation (EMR) and electrostatic discharge (ESD) insensitivity analysis, and (3) powder safety.

More Details

MELCOR 1.8.2 assessment: The MP-1 and MP-2 late phase melt progression experiments

Tautges, Timothy J.

MELCOR is a fully integrated, engineering-level computer code being developed at Sandia National Laboratories for the USNRC, that models the entire spectrum of severe accident phenomena in a unified framework for both BWRs and PWRs. As a part of an ongoing assessment program, MELCOR has been used to model the MP-1 and MP-2 experiments, which provided data for late-phase melt progression in PWR geometries. Core temperature predicted by MELCOR were within 250--500 K of measured data in both MP-1 and MP-2. Relocation in the debris bed and metallic crust regions of MP-2 was predicted accurately compared to PIE data. Temperature gradients in lower portions of the test bundle were not predicted well in both MP-1 and MP-2, due to the lack of modeling of the heat transfer path to the cooling jacket in those portions of the test bundles. Fifteen sensitivity studies were run on various core (COR), control volume hydrodynamics (CVH) and heat structures (HS) package parameters. No unexpected sensitivities were found, and in particular there were no sensitivities to reduced time step, finer nodalization or to computer platform. Calculations performed by the DEBRIS and TAC2D codes for MP-1 and MP-2 showed better agreement with measured data than those performed by MELCOR. This was expected, through, due to the fully 2-dimensional modeling used in the other codes.

More Details

Phase-locked arrays of vertical-cavity surface-emitting lasers

Warren, Mial E.

Vertical Cavity Surface-Emitting Lasers (VCSELs) are of increasing interest to the photonics community because of their surface-emitting structure, simple fabrication and packaging, wafer-level testability and potential for low cost. Scaling VCSELs to higher power outputs requires increasing the device area, which leads to transverse mode control difficulties if devices become larger than 10-15 microns. One approach to increasing the device size while maintaining a well controlled transverse mode profile is to form coupled or phase-locked, two-dimensional arrays of VCSELs that are individually single-transverse mode. The authors have fabricated and characterized both photopumped and electrically injected two-dimensional VCSEL arrays with apertures over 100 microns wide. Their work has led to an increased understanding of these devices and they have developed new types of devices, including hybrid semiconductor/dielectric mirror VCSEL arrays, VCSEL arrays with etched trench, self-aligned, gold grid contacts and arrays with integrated phase-shifters to correct the far-field pattern.

More Details

Minutes of the third annual workshop on chromate replacements in light metal finishing

Guilinger, Terry R.

Goal of the workshop was to bring together coating researchers, developers, and users from a variety of industries (defense, automotive, aerospace, packaging) to discuss new coating ideas from the perspective not only of end user, but also the coating supplier, developer, and researcher. The following are included in this document: workshop agenda, list of attendees, summary of feedback, workshop notes compiled by organizers, summaries of Sessions II and IV by session moderators, and vugraphs and abstracts.

More Details

Fracture-matrix interaction in Topopah Spring Tuff: Experiment and numerical analysis

Glass, R.J.; Tidwell, V.C.; Flint, A.L.; Peplinski, W.; Castro, Y.

Fracture-matrix interaction is investigated through combined physical and numerical experimentation. Two slabs of Topopah Spring Tuff are mated to form a vertical saw cut fracture to which water is supplied. X-ray imaging is used to obtain the matrix porosity field and transient saturation fields as water moves from the fracture into the matrix. Porosity, hydraulic conductivity, and pressure/saturation relations of the matrix are measured on small cores taken from adjacent rock. Correlations between hydraulic properties and porosity are developed and modeled. Numerical simulations using TOUGH2 are accomplished with a series of property fields of increasing detail. Property fields are modeled using the measured porosity field divided into 1, 3, 5, 11, and 21 porosity groups with the hydraulic properties assigned from the developed correlations and the average porosity within each group. Comparison with experimental results allows us to begin to evaluate current matrix property measurement techniques, specific matrix property models, property estimation procedures, and effects of matrix property variability.

More Details

Some results from the second iteration of total-system performance assessment for Yucca Mountain

Wilson, Michael L.

The second preliminary total-system performance assessment for the potential radioactive-waste-repository site at Yucca Mountain has recently been completed. This paper summarizes results for nominal aqueous and gaseous releases using the composite-porosity flow model. The results are found to be sensitive to the type of unsaturated-zone flow, to percolation flux and climate change, to saturated-zone dilution, to container-wetting processes and container-corrosion processes, to fuel-matrix alteration rate and radionuclide solubilities (especially for {sup 237}Np), and to bulk permeability and retardation of gaseous {sup 14}C. These are areas that should be given priority in the site-characterization program. Specific recommendations are given in the full report of the study.

More Details

JAC2D: A two-dimensional finite element computer program for the nonlinear quasi-static response of solids with the conjugate gradient method; Yucca Mountain Site Characterization Project

Biffle, J.H.; Blanford, M.L.

JAC2D is a two-dimensional finite element program designed to solve quasi-static nonlinear mechanics problems. A set of continuum equations describes the nonlinear mechanics involving large rotation and strain. A nonlinear conjugate gradient method is used to solve the equations. The method is implemented in a two-dimensional setting with various methods for accelerating convergence. Sliding interface logic is also implemented. A four-node Lagrangian uniform strain element is used with hourglass stiffness to control the zero-energy modes. This report documents the elastic and isothermal elastic/plastic material model. Other material models, documented elsewhere, are also available. The program is vectorized for efficient performance on Cray computers. Sample problems described are the bending of a thin beam, the rotation of a unit cube, and the pressurization and thermal loading of a hollow sphere.

More Details

Thermal and seismic impacts on the North Ramp at Yucca Mountain

Jung, Joseph

The impacts of thermal and seismic loads on the stability of the Exploratory Studies Facility North Ramp at Yucca Mountain were assessed using both empirical and analytical approaches. This paper presents the methods and results of the analyses. Thermal loads were first calculated using the computer code STRES3D. This code calculates the conductive heat transfer through a semi-infinite elastic, isotropic, homogeneous solid and the rafts thermally-induced stresses. The calculated thermal loads, combined with simulated earthquake motion, were then modeled using UDEC and DYNA3D, numerical codes with dynamic simulation capabilities. The thermal- and seismic-induced yield zones were post-processed and presented for assessment of damage. Uncoupled bolt stress analysis was also conducted to evaluate the seismic impact on the ground support components.

More Details

Construction monitoring activities in the ESF starter tunnel

Pott, John

In situ design verification activities am being conducted in the North Ramp Starter Tunnel of the Yucca Mountain Project Exploratory Studies Facility. These activities include: monitoring the peak particle velocities and evaluating the damage to the rock mass associated with construction blasting, assessing the rock mass quality surrounding the tunnel, monitoring the performance of the installed ground support, and monitoring the stability of the tunnel. In this paper, examples of the data that have been collected and preliminary conclusions from the data are presented.

More Details

Superconducting Technology Program: Sandia 1993 annual report

Roth, E.P.

Sandia`s STP program is a four-part high-temperature superconductor (HTS) research and development program consisting of efforts in powder synthesis and process development, thallium-based HTS film development, wire and tape fabrication, and HTS motor design. The objective of this work is to develop high-temperature superconducting conductors (wire and tape) capable of meeting requirements for high-power electrical devices of interest to industry. The four research efforts currently underway are: (1) process research on the material synthesis of high-temperature superconductors; (2) investigation of the synthesis and processing of thallium-based high-temperature superconducting thick films; (3) process development and characterization of high-temperature superconducting wire and tape, and (4) cryogenic design of a high-temperature superconducting motor. This report outlines the research that has been performed during FY93 in each of these four areas. A brief background of each project is included to provide historical context and perspective. Major areas of research are described, although no attempt has been made to exhaustively include all work performed in each of these areas.

More Details

CUBIT mesh generation environment. Volume 1: Users manual

Sjaardema, Gregory D.; Owen, Steven J.

The CUBIT mesh generation environment is a two- and three-dimensional finite element mesh generation tool which is being developed to pursue the goal of robust and unattended mesh generation--effectively automating the generation of quadrilateral and hexahedral elements. It is a solid-modeler based preprocessor that meshes volume and surface solid models for finite element analysis. A combination of techniques including paving, mapping, sweeping, and various other algorithms being developed are available for discretizing the geometry into a finite element mesh. CUBIT also features boundary layer meshing specifically designed for fluid flow problems. Boundary conditions can be applied to the mesh through the geometry and appropriate files for analysis generated. CUBIT is specifically designed to reduce the time required to create all-quadrilateral and all-hexahedral meshes. This manual is designed to serve as a reference and guide to creating finite element models in the CUBIT environment.

More Details

Triaxial creep measurements on rock salt from the Jennings dome, Louisiana, borehole LA-1, core {number_sign}8

Wawersik, W.R.; Zimmerer, D.J.

Tejas Power Company requested that facilities in the Rock Mechanics Laboratory at Sandia National Laboratories be used to assess the time-dependent properties of rock salt from the Jennings dome in Acadia Parish, Louisiana. Nominally 2.5-inch diameter slat core from borehole LA-1, core 8 (depth 3924.8 to 3837.8 ft; 1196.8--1197.1 m) was provided to accomplish two tasks: (1) Using the smallest possible number of experiments, evaluate the tendency of Jennings salt to undergo time-dependent deformation (creep) under constant applied stresses, and compare the creep of Jennings salt with creep data for rock salt from other locations. (2) Assess the applicability of published laboratory-derived creep properties for rock salt from several bedded and domal sites in finite element analyses concerning the design of new gas storage caverns in the Jennings dome. The characterization of Jennings salt followed the same strategy that was applied in earlier laboratory experiments on core from the Moss Bluff dome near Houston, Texas. This report summarizes the relevant details of five creep experiments on a sample from depth 3927.5 ft, the results obtained, and how these results compared with laboratory creep measurements gathered on rock salt from other locations including the West Hackberry, Bryan Mound and Moss Bluff domes. The report also considers the estimates of specific creep parameters commonly used in numerical engineering design analyses.

More Details

Neural network based time-optimal control of a magnetically levitated precision positioning system

Redmond, James M.

This paper describes an application of artificial neural networks to the problem of time-optimal control of a magnetically levitated platen. The system of interest is a candidate technology for advanced photolithography machines used in the manufacturing of integrated circuits. The nonlinearities associated with magnetic levitation actuators preclude the direct application of classical timeoptimal control methodologies for determining optimal rest-to-rest maneuver strategies. Instead, a computer simulation of the platen system is manipulated to provide a training set for an artificial neural network. The trained network provides optima switching times for conducting one dimensional rest-to-rest maneuvers of the platen that incorporate the full nonlinear effects of the magnetic levitation actuators. Sample problems illustrate the effectiveness of the neural network based control as compared to traditional proportional-derivative control.

More Details

The Assessment of Future Human Actions at Radioactive Waste Disposal Sites: An international perspective

Anderson, D.R.; Galson, D.A.; Patera, E.S.

For some deep geological disposal systems, the level of confinement provided by the natural and engineered barriers is considered to be so high that the greatest long-term risks associated with waste disposal may arise from the possibility of future human actions breaching the natural and/or engineered barrier systems. Following a Workshop in 1989, the OECD Nuclear Energy Agency established a Working Group on Assessment of Future Human Actions (FHA) a Radioactive Waste Disposal Sites. This Group met four times in the period 1991--1993, and has extensively reviewed approaches to and experience of incorporating the effects of FHA into long-term performance assessments (PAs). The Working Group`s report reviews the main issues concerning the treatment of FHA, presents a general framework for the quantitative, consideration of FHA in radioactive waste disposal programmes, and discusses means in reduce the risks associated with FHA. The Working Group concluded that FHA must be considered in PAs, although FHA where the actors were cognizant of the risks could be ignored. Credit can be taken for no more than several hundred years of active site control; additional efforts should therefore be taken to reduce the risks associated with FHA. International agreement on principles for the construction of FHA scenarios would build confidence, as would further discussion concerning regulatory policies for judging risks associated with FHA.

More Details

Large-scale testing of in-vessel debris cooling through external flooding of the reactor pressure vessel in the CYBL facility

Chu, Tze Y.

The possibility of achieving in-vessel core retention by flooding the reactor cavity, or the ``flooded cavity``, is an accident management concept currently under consideration for advanced light water reactors (ALWR), as well as for existing light water reactors (LWR). The CYBL (CYlindrical BoiLing) facility is a facility specifically designed to perform large-scale confirmatory testing of the flooded cavity concept. CYBL has a tank-within-a-tank design; the inner 3.7 m diameter tank simulates the reactor vessel, and the outer tank simulates the reactor cavity. The energy deposition on the bottom head is simulated with an array of radiant heaters. The array can deliver a tailored heat flux distribution corresponding to that resulting from core melt convection. The present paper provides a detailed description of the capabilities of the facility, as well as results of recent experiments with heat flux in the range of interest to those required for in-vessel retention in typical ALWRs. The paper concludes with a discussion of other experiments for the flooded cavity applications.

More Details

Probability mapping of contaminants

Rautman, Christopher A.

Exhaustive characterization of a contaminated site is a physical and practical impossibility. Descriptions of the nature, extent, and level of contamination, as well as decisions regarding proposed remediation activities, must be made in a state of uncertainty based upon limited physical sampling. The probability mapping approach illustrated in this paper appears to offer site operators a reasonable, quantitative methodology for many environmental remediation decisions and allows evaluation of the risk associated with those decisions. For example, output from this approach can be used in quantitative, cost-based decision models for evaluating possible site characterization and/or remediation plans, resulting in selection of the risk-adjusted, least-cost alternative. The methodology is completely general, and the techniques are applicable to a wide variety of environmental restoration projects. The probability-mapping approach is illustrated by application to a contaminated site at the former DOE Feed Materials Production Center near Fernald, Ohio. Soil geochemical data, collected as part of the Uranium-in-Soils Integrated Demonstration Project, have been used to construct a number of geostatistical simulations of potential contamination for parcels approximately the size of a selective remediation unit (the 3-m width of a bulldozer blade). Each such simulation accurately reflects the actual measured sample values, and reproduces the univariate statistics and spatial character of the extant data. Post-processing of a large number of these equally likely statistically similar images produces maps directly showing the probability of exceeding specified levels of contamination (potential clean-up or personnel-hazard thresholds).

More Details

Input shaping for three-dimensional slew maneuvers of a precision pointing flexible spacecraft

Dohrmann, Clark R.

A method is presented for input torque shaping for three-dimensional slew maneuvers of a precision pointing flexible spacecraft. The method determines the torque profiles for fixed-time, rest-to-rest maneuvers which minimizes a specified performance index. Spacecraft dynamics are formulated in such a manner that the rigid body and flexible motions are decoupled. Furthermore, assembly by making use of finite element analysis results. Input torque profiles are determined by solving an associated optimization problem using dynamic programming. Three example problems are provided to demonstrate the application of the method.

More Details

Dynamic failure in brittle solids

Grady, D.E.

Failure of brittle solids within the extremes of the shock loading environment is not well understood. Recent shock-wave data on compression shear failure and tensile spall failure for selected high-strength ceramics are presented and used to examine the mechanisms of dynamic failure. Energy-based theories are used to bound the measured strength properties. A new concept of failure waves in brittle solids is explored in light of the kinetic processes of high-rate fracture. Classical failure criteria are compared with the present base of dynamic strength data on ceramics.

More Details

The Surveillance And Reconnaissance Ground Equipment (SARGE), real robots for real soldiers

Pletta, J.B.

The Joint Program Office for Unmanned Ground Vehicles and Sandia National Laboratories are developing the Surveillance And Reconnaissance Ground Equipment (SARGE) robot. The SARGE system is a second generation refinement of Sandia`s Dixie robot. A comparison of Dixie`s actual performance and the expected SARGE performance characteristics will be given. The SARGE design philosophy embraces proven technology, low power consumption, and modular sensor packages designed to meet specific mission needs. A major aspect of the SARGE program is obtaining user acceptance through ownership of the prototype hardware. A total of ten systems are being fabricated with at least eight being given to infantry battalions for their use in day to day operations. The SARGE robot is a prototype system that is not intended to meet all the needs of the infantry soldier but will provide a reliable platform which will enable the soldier to determine first hand the required capabilities for future unmanned ground vehicles on the battlefield.

More Details

Predicted optical performance of the high-altitude balloon experiment (HABE) telescope in an adverse thermal environment

Akau, Ron L.

The High-Altitude Balloon Experiment (HABE) telescope was designed to operate at an ambient temperature of {minus}55 C and an altitude of 26 km, using a precooled primary mirror. Although at this altitude the air density is only 1.4 percent of the value at sea level, the temperature gradients within the telescope are high enough to deform the optical wavefront. This problem is considerably lessened by precooling the primary mirror to {minus}35 C. This paper describes the application of several codes to determine the range of wavefront deformation during a mission.

More Details

A Highly Agile Ground Assessment Robot (HAGAR) for military battlefield and support missions

Klarer, Paul R.

A mobile robotic vehicle with potential for use in military field applications is described. Based on a Sandia design intended for use in exploration of the Lunar surface, the Highly Agile Ground Assessment Robot (HAGAR) is a four wheeled all-wheel-drive dual-body vehicle. A uniquely simple method of chassis articulation is employed which allows all four wheels to remain in contact with the ground, even while operating in very rough terrain and climbing over obstacles as large as a wheel diameter. Skid steering and modular construction are used to produce a simple, rugged, lightweight, highly agile mobility chassis with a reduction in the number of parts required when compared to conventional vehicle designs for military battlefield and support missions. The design configuration, mobility parameters, potential mission configurations, and performance of existing and proposed HAGAR prototypes are discussed.

More Details

Overview of Sandia National Laboratories and Antenna Development Department

Brock, Billy C.

Sandia is a multiprogram R & D laboratory. It has responsibilities in the following areas: (1) defense programs; (2) energy and environment; and (3) work for others (DOD, NSA, etc.). In 1989, the National Competitiveness Technology Transfer Act added another responsibility -- contributions to industrial competitiveness. Sandia has two major laboratory locations, New Mexico and California, and two flight testing locations, Tonopah Test Range, Nevada and Kauai Test Facility, Hawaii. The last part of this talk was dedicated to antenna research at Sandia.

More Details

Continuum fluorescence of Cu in NbTi/Cu composite wires

Hlava, Paul F.

Continuum fluorescence across interfaces separating regions of differing composition is difficult to calculate. This paper illustrates a case of continuum fluorescence in analysis of superconducting NbTi/Cu composite wire which could lead to erroneous compositions due to Cu fluorescence by continuum x rays generated in an NbTi alloy. An approximate treatment of the continuum fluorescence is presented. 3 figs, 4 refs.

More Details

Robotics Technology Development Program Cross Cutting and Advanced Technology

Harrigan, Raymond W.

Need-based cross cutting technology is being developed which is broadly applicable to the clean up of hazardous and radioactive waste within the US Department of Energy`s complex. Highly modular, reusable technologies which plug into integrated system architectures to meet specific robotic needs result from this research. In addition, advanced technologies which significantly extend current capabilities such as automated planning and sensor-based control in unstructured environments for remote system operation are also being developed and rapidly integrated into operating systems.

More Details

Aerospace nuclear safety: An introduction and historical overview

Lee, J.H.; Buden, D.

This paper provides an introduction and overview on the topical area of aerospace nuclear safety. Emphasis is on the history of the use of nuclear power sources in space, operational experience with these nuclear sources, a review of previous accidents associated with both U.S. and Russian launches, and the safety issues associated with the entire life cycle of space reactors. There are several potential missions to include near earth orbit, orbit-raising, lunar bases, and propulsion to such solar system locations as Mars, which are suitable for the use of space reactors. The process by which approval is obtained to launch these nuclear materials to space is also presented as well as the role of nuclear safety policy and requirements in a space program using nuclear power sources. Important differences in safety concerns for the Radioisotope Thermoelectric Generators (RTGs) now used, and space reactors are presented. The role and purpose of independent safety evaluation and assessment in ensuring safe launch and operation is also discussed. In summary, this paper provides the requisite framework in this topical area for the remaining papers of this session.

More Details

Status of photovoltaic concentrator modules and systems

Maish, Alexander B.

Several leading line- and point-focus photovoltaic concentrator system development programs are reviewed, including those by ENTECH, SEA Corporation, AMONIX, and Alpha Solarco. Concentrating collectors and trackers are gaining maturity and reaching product status as designs are made more manufacturable and reliable. Utilities are starting to take notice of this emerging technology, and several privately-funded utility installations are underway. Several advantages are offered by concentrators, including low system and capital cost and rapid production ramp-up. These are discussed along with issues generally raised concerning concentrator technology.

More Details

Two-axis hydraulic joint for high speed, heavy lift robotic operations

Vaughn, M.R.; Robinett, R.D.; Phelan, J.R.; Vanzuiden, D.M.

A hydraulically driven universal joint was developed for a heavy lift, high speed nuclear waste remediation application. Each axis is driven by a simple hydraulic cylinder controlled by a jet pipe servovalve. Servovalve behavior is controlled by a force feedback control system, which damps the hydraulic resonance. A prototype single joint robot was built and tested. A two joint robot is under construction.

More Details

Remote use of distributed robotics resources to enhance technology development and insertion

Harrigan, Raymond W.

This paper describes Virtual Collaborative Environments (VCEs), an information architecture that enables remote sharing of mechatronic (intelligent electrochemical devices) resources. This architecture will leverage the proposed National Information Infrastructure (NII) or Information Highway to share valuable resources and reduce product-to-market cycles. Benefits of sharing mechatronic resources with VCEs are explored. An existing prototype VCE is described and experimental and illustrative results from using the prototype VCE system are discussed.

More Details

Using voice input and audio feedback to enhance the reality of a virtual experience

Miner, Nadine E.

Virtual Reality (VR) is a rapidly emerging technology which allows participants to experience a virtual environment through stimulation of the participant`s senses. Intuitive and natural interactions with the virtual world help to create a realistic experience. Typically, a participant is immersed in a virtual environment through the use of a 3-D viewer. Realistic, computer-generated environment models and accurate tracking of a participant`s view are important factors for adding realism to a virtual experience. Stimulating a participant`s sense of sound and providing a natural form of communication for interacting with the virtual world are equally important. This paper discusses the advantages and importance of incorporating voice recognition and audio feedback capabilities into a virtual world experience. Various approaches and levels of complexity are discussed. Examples of the use of voice and sound are presented through the description of a research application developed in the VR laboratory at Sandia National Laboratories.

More Details

Thermal stability studies of diamond-like carbon films

Parmeter, John

Thin films of amorphous carbon/hydrogen, also known as diamond-like carbon or DLC, are of interest as an economical alternative to diamond in a variety of coatings applications. We have investigated the thermal stability of DLC films deposited onto tungsten and aluminum substrates via plasma CVD of methane. These films contain approximately 40 atom % hydrogen, and based on Auger spectra the carbon in the films is estimated to be 60% sp{sup 3} hybridized and 40% sp{sup 2} hybridized. Thermal desorption, Auger, and Raman measurements all indicate that the DLC films are stable to 250--300C. Between 300 and 500C, thermal evolution of hydrogen from the films is accompanied by the conversion of carbon from sp{sup 3} to sp{sup 2} hybridization, and Raman spectra indicate the conversion of the overall film structure from DLC to micro-crystalline graphite or so called ``glassy`` carbon. These results suggest that DLC of this type is potentially useful for applications in which the temperature does not exceed 250C.

More Details

SERAPHIM: A magnetic propulsion scheme for fast trains

Marder, Barry M.

We are attempting to develop and demonstrate a new type of linear synchronous induction motor capable of propelling a vehicle at high speed. The technology, based on a passive guideway containing sequential aluminum plates, was developed in Sandia`s electromagnetic launch program. As such, it was called a ``re-connection gun`` and launched an aluminum plate from between pairs of pancake coils. In the proposed propulsion scheme, the plates are fixed and the coils move. Pairs of closely spaced pancake coils on the vehicle straddle vertically mounted aluminum plates in the roadbed. The current in the coils is turned on when the plate is fully covered, peaks at some optimal time, and decreases to zero before separation. This induces currents in the plate which interact with the coil current to produce repulsive forces. In essence, the pulsed coils push off the edge of the plate because at the high frequency of operation, the current has insufficient time to fully penetrate. Since no embedded flux is required, the efficiency actually increases with speed. This concept has been named SERAPHIM, for SEgmented RAil PHased Induction Motor.

More Details

The use of optically triggered, high gain GaAs switches for UWB pulse generation

Loubriel, Guillermo M.

A high peak power impulse pulser that is controlled with high gain, optically triggered GaAs Photoconductive Semiconductor Switches (PCSS) has been constructed and tested. The system has a short 50 {Omega} line that is charged to 100 kV and discharged through the switch when the switch is triggered with as little as 90 nJ of laser energy. The laser that is used is a small laser diode array whose output is delivered through a fiber to the switch. The current in the system ranges from 1 kA (with one laser) to 1.3 kA (with two) and the pulse widths are 1.9 and 1.4 ns, respectively. The peak power and the energy delivered to the load are 50 MW to 84 MW and 95 NJ to 120 mJ for one or two lasers. The small trigger energy and switch jitter are due to a high gain switching mechanism in GaAs. This experiment also shows a relationship between the rise time of the voltage across the switch and the required trigger energy and switch jitter.

More Details

Ion-exchange performance of crystalline silico-titanates for cesium removal from Hanford Tank Waste Simulants

Klavetter, E.A.

A new class of inorganic ion exchangers, called crystalline silicotitanates (CSTs), has been prepared at Sandia National Laboratories and Texas A&M University. CSTs have been determined to have high selectivity for the adsorption of Cs and Sr, and several other radionuclides from highly alkaline, high-sodium supernate solutions such as those found at Westinghouse Hanford (WHC). An extensive program has been conducted to assess the applicability of CSTs for treating Hanford wastes. Continuous flow, ion-exchange columns are expected to be used to remove Cs and other radionuclides from the Hanford tank supernate. The proposed application for the CST would be Cs removal from highly alkaline salt solutions in a single pass process with interim storage of the Cs loaded CST until the glass vitrification plant is operational. This paper presents test results which address the important chemical, physical, and radiological properties which are expected to be relevant for Hanford radwaste processing. Results indicate that CSTs have a large distribution coefficient (K{sub d}>2000 mL/g in NCAW simulants) for adsorbing ppm concentrations of Cs. These wastes are highly alkaline (>O.6M OH{sup {minus}}) with high sodium (>5M Na{sup +}) concentrations. CSTs exhibit very high K, values (>20,000 mL/g) for Cs in neutral solutions and K, values of >2,000 mL/g in solutions containing 2M HNO{sub 3}. Presented are results from initial experimental efforts that describe the potential performance of the CSTs in laboratory-scale ion-exchange columns. Included are results showing the stability of the CST material in basic solutions and in radiation doses up to 10{sup 9} rads (Si). The status on the commercialization of the CST powder and engineered-form is discussed. Sufficient material for expanded testing and evaluation is expected to become available during 1994.

More Details

D-D fusion experiments using fast z pinches

Spielman, Rick

The development of high current (I > 10 MA) drivers provides us with a new tool for the study of neutron-producing plasmas in the thermal regime. The imploded deuterium mass (or collisionality) increases as I{sup 2} and the ability of the driver to heat the plasma to relevant fusion temperatures improves as the power of the driver increases. Additionally, fast (< 100 ns) implosions are more stable to the usual MHD instabilities that plagued the traditional slower implosions. We describe experiments in which deuterium gas puffs or CD{sub 2} fiber arrays were imploded in a fast z-pinch configuration on Sandia`s Saturn facility generating up to 3 {times} 10{sup 12} D-D neutrons. These experiments were designed to explore the physics of neutron-generating plasmas in a z-pinch geometry. Specifically, we intended to produce neutrons from a nearly thermal plasma where the electrons and ions have a nearly Maxwellian distribution. This is to be clearly differentiated from the more usual D-D beam-target neutrons generated in many dense plasma focus (DPF) devices.

More Details

Radially combined 30 W, 14-16 GHz amplifier

Knudson, R.T.

The paper describes a highly integrated 30 W power amplifier for a Synthetic Aperture Radar, operating in the 14--16 GHz band. The use of a waveguide radial combiner, a microstrip power divider and direct microstrip to waveguide miniaturized ceramic technology, leads to an unusually compact and accessible structure, well suited for commercial production.

More Details

Design of a pressure/temperature logging system for geothermal applications

Lysne, P.

Past memory logging tools have provided excellent pressure/temperature data when used in a geothermal environment, and they are easier to maintain and deploy than tools requiring an electric wireline connection to the surface. However, they are deficient since the tool operator is unaware of downhole conditions that could require changes in the logging program. Tools that make ``decisions`` based on preprogrammed scenarios can partially overcome this difficulty, and a suite of such memory tools is under development at Sandia. The first tool, which forms the basis for future instruments, measures pressure and temperature. Design considerations include a minimization of cost while insuring quality data, size compatibility with diamond-cored holes, use in holes to 425{degree}C (800{degree}F), transportability by ordinary passenger air service, and ease of operation. Prototype tools are available for evaluation by the geothermal industry.

More Details

Capillary flow solderability test for printed wiring boards

Hosking, F.M.; Yost, F.G.; Hernandez, C.L.; Sackinger, S.J.

This report describes a new technique for evaluating capillary flow solderability on printed circuit boards. The test involves the flow of molten solder from a pad onto different-sized conductor lines. It simulates the spreading dynamics of either plated-through-hole (PTH) or surface mount technology (SMT) soldering. A standard procedure has been developed for the test. Preliminary experiments were conducted and the results demonstrate test feasibility. Test procedures and results are presented in this report.

More Details
Results 96401–96450 of 99,299
Results 96401–96450 of 99,299