Publications

Results 95751–95800 of 99,299

Search results

Jump to search filters

Current trends in the packaging of photonic devices

Carson, R.F.

More Details

Sandia National Lab`s precision laser tracking systems

Patrick, D.

Sandia Labs` mobile tracking systems have only one moving part. The double gimballed 18 inch diameter beryllium mirror is capable of constant tracking velocities up to 5 rads/sec in both axes, and accelerations to 150 rads/sec/sec in both axes. Orthogonality is <10 microradians. The mirror directs the 488 and 514 nm wavelength CW laser beams to adhesive-backed reflective material applied to the test unit. The mirror catches the return beam and visual image, directing the visual image to three camera bays, and the return beam to an image dissector behind an 80 inch gathering telescope. The image dissector or image position sensor is a photomultiplier with amplifying drift tube and electron aperture and its associated electronics. During the test, the image dissector scan senses the change in position of the reflective material and produces signals to operate the azimuth and elevation torque motors in the gimbal assembly. With the help of 1 1/8 inch diameter azimuth and elevation galvonometer steering mirrors in the optical path, the laser beam is kept on the target at extremely high velocities. To maintain a constant return signal strength, the outgoing beam is run through a microprocessor controlled beam focusing telescope.

More Details

Geologic site characterization requirements for storage and mining in salt

Neal, J.T.

Geologic Site Characterization should be a dynamic, continuing process, not an event. Its successes and failures are legion and can make or break an operator. A balanced approach must be sought to provide adequate information for safety of operations, neither slighting nor overdoing the effort. The evolving nature of study methods and geologic knowledge essentially mandates that characterization efforts be reviewed periodically. However, indifference, nonchallance, and even outright disdain describe attitudes witnessed in some circles regarding this subject. Unawareness may also be a factor. Unfortunately, several unanticipated events have led to severe economic consequences for the operators. The hard-learned lessons involving several unanticipated geotechnical occurrences at several Gulf Coast salt domes are discussed. The ultimate benefit of valuing site characterization efforts may be more than just enhanced safety and health--costs not expended in lost facilities and litigation can become profit.

More Details

Scalable ATM encryption

Pierson, Lyndon G.

In order to provide needed security assurances for traffic carried in Asynchronous Transfer Mode (ATM) networks, methods of protecting the integrity and privacy of traffic must be employed. Cryptographic methods can be used to assure authenticity and privacy, but are hard to scale and the incorporation of these methods into computer networks can severely impact functionality, reliability, and performance. To study these trade-offs, a research prototype encryptor/decryptor is under development. This prototype is to demonstrate the viability of implementing certain encryption techniques in high speed networks by processing Asynchronous Transfer Mode (ATM) cells in a SONET OC-3 payload. This paper describes the objectives and design trade-offs intended to be investigated with the prototype. User requirements for high performance computing and communication have driven Sandia to do work in the areas of functionality, reliability, security, and performance of high speed communication networks. Adherence to standards (including emerging standards) achieves greater functionality of high speed computer networks by providing wide interoperability of applications, network hardware, and network software.

More Details

Scannerless range imaging with a square wave

Muguira, Maritza R.

Scannerless range imaging (SRI) is a unique approach to three dimensional imaging without scanners. SRI does, however, allow a more powerful light source to be used as compared to conventional Laser Radar (LADAR) systems due to the speed of operation associated with this staring system. As a result, a more efficient method of operation was investigated. As originally conceived, SRI transmits a continuous intensity modulated sinusoidal signal; however, a square wave driver is more energy efficient than a sinusoidal driver. In order to take advantage of this efficiency, a square wave operational methodology was investigated. As a result, four image frames are required for the extraction of range using a square wave to unambiguously resolve all time delays within one time period compared to a minimum of three frames for the sinusoidal wave.

More Details

Assessment of ALWR passive safety system reliability. Phase 1: Methodology development and component failure quantification

Hake, T.M.

Many advanced light water reactor (ALWR) concepts proposed for the next generation of nuclear power plants rely on passive systems to perform safety functions, rather than active systems as in current reactor designs. These passive systems depend to a great extent on physical processes such as natural circulation for their driving force, and not on active components, such as pumps. An NRC-sponsored study was begun at Sandia National Laboratories to develop and implement a methodology for evaluating ALWR passive system reliability in the context of probabilistic risk assessment (PRA). This report documents the first of three phases of this study, including methodology development, system-level qualitative analysis, and sequence-level component failure quantification. The methodology developed addresses both the component (e.g. valve) failure aspect of passive system failure, and uncertainties in system success criteria arising from uncertainties in the system`s underlying physical processes. Traditional PRA methods, such as fault and event tree modeling, are applied to the component failure aspect. Thermal-hydraulic calculations are incorporated into a formal expert judgment process to address uncertainties in selected natural processes and success criteria. The first phase of the program has emphasized the component failure element of passive system reliability, rather than the natural process uncertainties. Although cursory evaluation of the natural processes has been performed as part of Phase 1, detailed assessment of these processes will take place during Phases 2 and 3 of the program.

More Details

Thermal measurements to characterize large fires

Gritzo, Louis A.

Full-scale fire characterization tests are becoming less frequent due to cost restrictions and environmental concerns. This trend, combined with significant advances in fire field modeling, has resulted in an increased effort to perform well-designed experiments which support the development and validation of numerical tools. In pursuit of improved fire characterization, large-fire measurement techniques in large-scale (D > 2m) fires are reviewed in this work. Primary attention is focused on the measurement of temperature and heat flux. Additional measurements of quantities such as soot volume fraction, soot emission temperature, and gas species are also addressed. Issues relating to the use of existing techniques, and methods for improving and interpreting the results from existing measurement techniques are presented. Alternate techniques for fire characterization and needs for development of advanced measurement technology are also briefly discussed.

More Details

Dynamic pulse buckling of cylindrical shells under axial impact: A benchmark study of 2D and 3D finite element calculations

Hoffman, Edward L.

A series of tests investigating dynamic pulse buckling of a cylindrical shell under axial impact is compared to several 2D and 3D finite element simulations of the event. The purpose of the work is to investigate the performance of various analysis codes and element types on a problem which is applicable to radioactive material transport packages, and ultimately to develop a benchmark problem to qualify finite element analysis codes for the transport package design industry. During the pulse buckling tests, a buckle formed at each end of the cylinder, and one of the two buckles became unstable and collapsed. Numerical simulations of the test were performed using PRONTO, a Sandia developed transient dynamics analysis code, and ABAQUS/Explicit with both shell and continuum elements. The calculations are compared to the tests with respect to deformed shape and impact load history.

More Details

Models of transport, gas-phase and surface chemistry in diamond chemical vapor deposition

Coltrin, Michael E.

This paper presents an analysis of the Chemical Vapor Deposition of diamond thin films in a direct-current (dc) arc-jet reactor. The analysis discussed here includes a model of the performance of the arc-jet hydrogen excitation source, chemistry in the free-stream region, diffusive transport and chemistry in the boundary layer and at the surface. The surface chemistry model includes pathways for deposition of diamond, as well as creation of defects in the diamond lattice.

More Details

Growth and characterization of heterostructures and infrared emitters with compressed InAsSb layers

Kurtz, S.R.

An overview is presented of work on strained InAsSb heterostructures and infrared emitters. InAsSb/InGaAs strained-layer superlattices (SLS) and InAsSb quantum wells were grown by metal-organic chemical vapor deposition and characterized using magneto-photoluminescence. LEDs and lasers with InAsSb heterostructure active regions are described.

More Details

The design life affects system design

Dean, F.F.

When a system is being designed, one of the system requirements will specify the intended life for the system, which is called the design life, the system life, the expected operational lifetime, or the service life. This specification is an important driver of the total life cycle cost. This paper suggests how specifying this design life affects the design and the cost of the system.

More Details

Improved portable lighting for visual aircraft inspection

Shagam, Richard N.

The most common tool used by aircraft inspectors is the personal flashlight. While it is compact and very portable, it is generally typified by poor beam quality which can interfere with the ability for an inspector to detect small defects and anomalies, such as cracks and corrosion sites, which may be indicators of major structural problems. A Light Shaping Diffuser{trademark} (LSD) installed in a stock flashlight as a replacement to the lens can improve the uniformity of an average flashlight and improve the quality of the inspection. Field trials at aircraft maintenance facilities have demonstrated general acceptance of the LSD by aircraft inspection and maintenance personnel.

More Details

A hazard separation system for dismantlement of nuclear weapon components

Lutz, J.D.

Over the next decade, the US Department of Energy (DOE) must retire and dismantle many nuclear weapon systems. In support of this effort, Sandia National Laboratories (SNL) has developed the Hazard Separation System (HSS). The HSS combines abrasive waterjet cutting technology and real-time radiography. Using the HSS, operators determine the exact location of interior, hazardous sub-components and remove them through precision cutting. The system minimizes waste and maximizes the recovery of recyclable materials. During 1994, the HSS was completed and demonstrated. Weapon components processed during the demonstration period included arming, fusing, and firing units; preflight control units; neutron generator subassemblies; and x-units. Hazards removed included radioactive krytron tubes and gap tubes, thermal batteries, neutron generator tubes, and oil-filled capacitors. Currently, the HSS is being operated at SNL in a research and development mode to facilitate the transfer of the technology to other DOE facilities for support of their dismantlement operations.

More Details

STM measurements of the interaction of vacancies and steps during low-energy-ion bombardment of Si(001)

Swartzentruber, Brian

We create mobile surface vacancies on vicinal Si(001) by bombarding the surface with 300 eV Xe ions at a substrate temperature of 465{degrees}C. The vacancies preferentially annihilate at the rough steps retracting them with respect to their smooth neighbors. This process leads to a bimodal terrace width distribution. The retraction of the rough steps due to the vacancy annihilation is in competition with the healing process by which the surface tries to maintain its equilibrium configuration of equally spaced steps. As the two competing processes balance, the surface reaches steady state and subsequent removal of surface atoms is manifest as simple step flow.

More Details

Minutes of the fourth annual workshop on chromate replacements in light metal finishing

Guilinger, Terry R.

The purpose of publishing the minutes of this workshop is to document the content of the presentations and the direction of the discussions at the workshop as a means of fostering collaborative research and development on chromate replacements throughout the defense, automotive, aerospace, and packaging industries. The goal of the workshop was to bring together coating researchers, developers, and users from a variety of industries to discuss new coating ideas, testing methods, and coating preparation techniques from the perspective not only of end user, but also from the perspective of coating supplier, developer, and researcher. To this end, we succeeded because of the wide-ranging interests of attendees present in the more than 60 workshop registrants. It is our hope that future workshops, not only this one but others like it throughout government and industry, can benefit from the recorded minutes of our meeting and use them as a starting point for future discussions of the directions for chromate replacements in light metal finishing.

More Details

Numerical simulations of multicomponent evaporation and gas-phase transport experiments using M{sup 2}NOTS

Ho, Clifford K.

The multiphase, multicomponent, non-isothermal simulator M2NOTS was tested against several one-dimensional experiments. The experiments represented limiting conditions of soil venting processes: (1) a through-flow condition in which air flows through the contaminated region, and (2) a bypass-flow condition in which air is channeled around (rather than through) the contaminated region. Predictions using M2NOTS of changing in situ compositions and effluent concentrations for toluene and o-xylene mixtures were compared to the observed results for each condition. Results showed that M2NOTS was able to capture the salient trends and features of multicomponent through-flow and bypass-flow venting processes.

More Details

On bootstrapping local search with trail-markers

Chen, Pang C.

We identify a general framework for search called bootstrap search, which is defined as global search using only a local search procedure along with some memory for learning intermediate subgoals. We present a simple algorithm for bootstrap search, and provide some initial theory on their performance. In our theoretical analysis, we develop a random digraph problem model and use it to make some performance predictions and comparisons. We also use it to provide some techniques for approximating the optimal resource bound on the local search to achieve the best global search. We validate our theoretical results with empirical demonstration on the 15-puzzle. We show how to reduce the cost of a global search by 2 orders of magnitude using bootstrap search. We also demonstrate a natural but not widely recognized connection between search costs and the lognormal distribution. To further illustrate our algorithm`s generality and effectiveness, we also apply it to robot path planning, and demonstrate a phenomenon of over-learning.

More Details

xdamp: An IDL{reg_sign}-based Data Manipulation Program

Ballard, William P.

The original DAMP (DAta Manipulation Program) was written by Mark Hedemann of Sandia National Laboratories and used the CA-DISSPLA{trademark} (available from Computer Associates International, Inc., Garden City, NY) graphics package as its engine. It was used to plot, modify, and otherwise manipulate the one-dimensional data waveforms (data vs time) from a wide variety of accelerators. With the waning of CA-DISSPLA and the increasing popularity of UNIX{reg_sign}-based workstations, a replacement was needed. This package uses the IDL{reg_sign} software, available from Research Systems Incorporated in Boulder, Colorado, as the engine, and creates a set of widgets to manipulate the data in a manner similar to the original DAMP. IDL is currently supported on a wide variety of UNIX platforms such as IBM{reg_sign} workstations, Hewlett Packard workstations, SUN{reg_sign} workstations, Microsoft{reg_sign} Windows{trademark} computers, Macintosh{reg_sign} computers and Digital Equipment Corporation VMS{reg_sign} systems. Thus, this program should be portable across many platforms. We have verified operation, albeit with some IDL bugs, on IBM UNIX platforms, DEC Alpha systems, HP 9000/7OO series workstations, and Macintosh computers, both regular and PowerPC{trademark} versions.

More Details

PINCA: A scalable parallel program for compressible gas dynamics with nonequilibrium chemistry

Wong, C.C.; Blottner, F.G.; Payne, J.L.; Soetrisno, M.; Imlay, S.T.

This report documents an exploratory research work, funded by the Laboratory Directed Research and Development (LDRD) office at Sandia National Laboratories, to develop an advanced, general purpose, robust compressible flow solver for handling large, complex, chemically reacting gas dynamics problems. The deliverable of this project, a computer program called PINCA (Parallel INtegrated Computer Analysis) will run on massively parallel computers such as the Intel/Gamma and Intel/Paragon. With the development of this parallel compressible flow solver, engineers will be better able to address large three-dimensional scientific arid engineering problems involving multi-component gas mixtures with finite rate chemistry. These problems occur in high temperature industrial processes, combustion, and hypersonic: reentry of space-crafts.

More Details

Globally stable feedback laws for near-minimum-fuel and near-minimum-time pointing maneuvers for a landmark-tracking spacecraft

Schaub, H.; Robinett, R.D.; Junkins, J.L.

Utilizing unique properties of a recently developed set of attitude parameters, the modified Rodrigues parameters, we develop feedforward/feedback type control laws that globally control a spacecraft undergoing large nonlinear motions, using three or more reaction wheels. The method is suitable for tracking given smooth reference trajectories that spline smoothly into a target slate or pure spin motion; these reference trajectories may be exact or approximate solutions of the system equations of motion. In particular, we illustrate the ideas using both near-minimum-time and near-minimum fuel rotations about Euler`s principal rotation axis, with parameterization of the sharpness of the control switching for each class of reference maneuvers. Lyapunov stability theory is used to prove rigorous stability of closed loop motion in the end game, and qualified Lyapunov stability during the large nonlinear path tracking portion of the closed loop tracking error dynamics. The methodology is illustrated by designing example control laws for a prototype landmark tracking spacecraft; simulations are reported that show this approach to be attractive for practical applications. The inputs to the reference trajectory are designed with user-controlled sharpness of all control switches, to enhance the trackability of the reference maneuvers in the presence of structural flexibility.

More Details

Observations and insights from low power and shutdown studies: Grand Gulf Nuclear Power Plant during POS 5 of a refueling outage

Whitehead, Donnie W.

With the recent completion of the documentation of the results from the Grand Gulf Nuclear Power Plant Low Power and Shutdown (LP and S) project funded by the US Nuclear Regulatory Commission (NRC), detailed probabilistic risk assessment (PRA) information from a boiling water reactor (BWR) for a specific time period in LP and S conditions became available for examination. This report contains observations and insights extracted from an examination of: (1) results in the LP and S documentation; (2) the specific models and assumptions used in the LP and S analyses; (3) selected results from the full-power analysis; (4) the experience of the analysts who performed the original LP and S study; and (5) results from sensitivity calculations performed as part of this project to help determine the impact that model assumptions and data values had on the results from the original LP and S analysis. Specifically, this study makes observations on and develops insights from the estimates of core damage frequency and aggregate risk (early fatalities and total latent cancer fatalities) associated with operations during plant operational state (POS) 5 (i.e., basically cold shutdown as defined by Technical Specifications) during a refueling outage for traditional internal events. A discussion of similarities and differences between full power accidents and accidents during LP and S conditions is provided. As part of this discussion, core damage frequency and risks results are presented on a per hour and per calendar year basis, allowing alternative perspectives on both the core damage frequency and risk associated with these two operational states.

More Details

Electron beam joining of structural ceramics

Turman, B.N.

Feasibility of ceramic joining using a high energy (10 MeV) electron beam. The experiments used refractory metals as bonding materials in buried interfaces between Si{sub 3}N{sub 4} pieces. Because the heat capacity of the metal bonding layer is much lower than the ceramic, the metal reaches much higher temperatures than the adjoining ceramic. Using the right combination of beam parameters allows the metal to be melted without causing the adjoining ceramics to melt or decompose. Beam energy deposition and thermal simulations were performed to guide the experiments. Joints were shear tested and interfaces between the metal and the ceramic were examined to identify the bonding mechanism. Specimens joined by electron beams were compared to specimens produced by hot-pressing. Similar reactions occurred using both processes. Reactions between the metal and ceramic produced silicides that bond the metal to the ceramic. The molybdenum silicide reaction products appeared to be more brittle than the platinum silicides. Si{sub 3}N{sub 4} was also joined to Si{sub 3} N{sub 4} directly. The bonding appears to have been produced by the flow of intergranular glass into the interface. Shear strength was similar to the metal bonded specimens. Bend specimens Of Si{sub 3}N{sub 4} were exposed to electron beams with similar parameters to those used in joining experiments to determine how beam exposure degrades the strength. Damage was macroscopic in nature with craters being tonned by material ablation, and cracking occurring due to excessive thermal stresses. Si was also observed on the surface indicating the Si{sub 3}N{sub 4} was decomposing. Bend strength after exposure was 62% of the asreceived strength. No obvious microstructural differences were observed in the material close to the damaged region compared to material in regions far away from the damage.

More Details

Design rules and reality check for carbon-based ultracapacitors

Eisenmann, E.T.

Design criteria for carbon-based Ultracapacitors have been determined for specified energy and power requirements, using the geometry of the components and such material properties as density, porosity and conductivity as parameters, while also considering chemical compatibility. This analysis shows that the weights of active and inactive components of the capacitor structure must be carefully balanced for maximum energy and power density. When applied to nonaqueous electrolytes, the design rules for a 5 Wh/kg device call for porous carbon with a specific capacitance of about 30 F/cm{sup 3}. This performance is not achievable with pure, electrostatic double layer capacitance. Double layer capacitance is only 5 to 30% of that observed in aqueous electrolyte. Tests also showed that nonaqeous elcctrolytes have a diminished capability to access micropores in activated carbon, in one case yielding a capacitance of less than 1 F/cm{sup 3} for carbon that had 100 F/cm{sup 3} in aqueous electrolyte. With negative results on nonaqueous electrolytes dominating the present study, the obvious conclusion is to concentrate on aqueous systems. Only aqueous double layer capacitors offer adequate electrostatic charging characteristics which is the basis for high power performance. There arc many opportunities for further advancing aqueous double layer capacitors, one being the use of highly activated carbon films, as opposed to powders, fibers and foams. While the manufacture of carbon films is still costly, and while the energy and power density of the resulting devices may not meet the optimistic goals that have been proposed, this technology could produce true double layer capacitors with significantly improved performance and large commercial potential.

More Details

Learning to improve path planning performance

Chen, Pang C.

In robotics, path planning refers to finding a short. collision-free path from an initial robot configuration to a desired configuratioin. It has to be fast to support real-time task-level robot programming. Unfortunately, current planning techniques are still too slow to be effective, as they often require several minutes, if not hours of computation. To remedy this situation, we present and analyze a learning algorithm that uses past experience to increase future performance. The algorithm relies on an existing path planner to provide solutions to difficult tasks. From these solutions, an evolving sparse network of useful robot configurations is learned to support faster planning. More generally, the algorithm provides a speedup-learning framework in which a slow but capable planner may be improved both cost-wise and capability-wise by a faster but less capable planner coupled with experience. The basic algorithm is suitable for stationary environments, and can be extended to accommodate changing environments with on-demand experience repair and object-attached experience abstraction. To analyze the algorithm, we characterize the situations in which the adaptive planner is useful, provide quantitative bounds to predict its behavior, and confirm our theoretical results with experiments in path planning of manipulators. Our algorithm and analysis are sufficiently, general that they may also be applied to other planning domains in which experience is useful.

More Details

System identification for robust control design

Dohner, Jeffrey L.

System identification for the purpose of robust control design involves estimating a nominal model of a physical system and the uncertainty bounds of that nominal model via the use of experimentally measured input/output data. Although many algorithms have been developed to identify nominal models, little effort has been directed towards identifying uncertainty bounds. Therefore, in this document, a discussion of both nominal model identification and bounded output multiplicative uncertainty identification will be presented. This document is divided into several sections. Background information relevant to system identification and control design will be presented. A derivation of eigensystem realization type algorithms will be presented. An algorithm will be developed for calculating the maximum singular value of output multiplicative uncertainty from measured data. An application will be given involving the identification of a complex system with aliased dynamics, feedback control, and exogenous noise disturbances. And, finally, a short discussion of results will be presented.

More Details

Petroleum and geothermal production technology in Russia: Summary of information obtained during informational meetings with several Russian Institutes

Schafer, D.M.; Glowka, D.A.; Teufel, L.W.

Russian scientists and engineers have drilled the deepest holes in the world. It is recognized that this experience has given them an expertise in drilling superdeep holes, as well as other aspects of drilling, completions, and geophysics. More and more US oil and gas companies are vigorously expanding their exploration and development into Russia. It is important for them to identify and use Russian technology in drilling, completion, logging, and reservoir characterization to the extent possible, in order to both reduce drilling costs and help support the Russian economy. While these US companies are interested in becoming involved in and/or sponsoring research in Russia, they have been unsure as to which scientists and institutes are working on problems of interest. It was also important to determine in which areas Russian technology is farther advanced than in the West. Such technology could then be commercialized as part of the Industrial Partnering Program. In order to develop a clear understanding of these issues, two Sandia engineers with drilling and completions expertise and a geophysicist with expertise in reservoir analysis traveled to Russia to meet with Russian scientists and engineers to discuss their technologies and areas of interest. This report contains a summary of the information obtained during the visit.

More Details

Historical and projected costs of natural disasters

Engi, Dennis

Natural disasters cause billions of dollars of damage and thousands Of deaths globally each year. While the magnitude is clear, the exact costs (in damage and fatalities) are difficult to clearly identify. This document reports on the results of a survey of data on the costs associated with significant natural disasters. There is an impressive amount of work and effort going into natural disaster research, mitigation, and relief. However, despite this effort, there are surprisingly few consistent and reliable data available regarding the effects of natural disasters. Even lacking consistent and complete data, it is clear that the damage and fatalities from natural disasters are increasing, both in the United States, and globally. Projections using the available data suggest that, in the United States alone, the costs of natural disasters between 1995 and 2010 will be in the range of $90 billion (94$) and 5000 lives.

More Details

Off site demonstrations for MWLID technologies

Williams, Cecelia V.

Open demonstrations of technologies developed by the Office of Technology Development`s (QTD`s) Mixed Waste Landfill Integrated Demonstration (MWLID) should facilitate regulatory acceptance and speed the transfer and commercialization of these technologies. The purpose of the present project is to identify the environmental restoration needs of hazardous waste and/or mixed waste landfill owners within a 25-mile radius of Sandia National Laboratories (SNL). Most municipal landfills that operated prior to the mid-1980s accepted household/commercial hazardous waste and medical waste that included low-level radioactive waste. The locations of hazardous and/or mixed waste landfills within the State of New Mexico were. identified using federal, state, municipal and Native American tribal environmental records. The records reviewed included the US Environmental Protection Agency (EPA) Superfund Program CERCLIS Event/Site listing (which includes tribal records), the New Mexico Environment Department (NMED), Solid Waste Bureau mixed waste landfill database, and the City of Albuquerque Environmental Health Department landfill database. Tribal envirorunental records are controlled by each tribal government, so each tribal environmental officer and governor was contacted to obtain release of specific site data beyond what is available in the CERCLIS listings.

More Details

Analysis of the frequency response of a TeO{sub 2} slow shear wave acousto-optic cell exposed to radiation

Erteza, Ireena

Radiation testing of photonic components is not new, however component level testing to date has not completely addressed quantities which are important to system behavior. One characteristic that is of particular importance for optical processing systems is the frequency response. In this report, we present the analysis of data from an experiment designed to provide a preliminary understanding of the effects of radiation on the frequency response of acousto-optic devices. The goal of the analysis is to describe possible physical mechanisms responsible for the radiation effects and to discuss the effects on signal processing functionality. The experiment discussed in this report was designed by Sandia National Laboratories and performed by Sandia and Phillips Laboratory personnel at White Sands Missile Range (WSMR). In the experiment, a TeO{sub 2} slow shear wave acousto-optic cell was exposed to radiation from the WSMR linear accelerator. The TeO{sub 2} cell was placed in an experimental configuration which allowed swept frequency diffracted power measurements to be taken during radiation exposure and recovery. A series of exposures was performed. Each exposure consisted of between 1 to 800, 1{mu}sec radiation pulses (yielding exposures of 2.25 kRad(Si) to 913 kRad(Si)), followed by recovery time. At low total and cumulative doses, the bandshape of the frequency response (i.e. diffracted power vs. frequency) remained almost identical during and after radiation. At the higher exposures, however, the amplitude and width of the frequency response changed as the radiation continued, but returned to the original shape slowly after the radiation stopped and recovery proceeded. It is interesting to note that the location of the Bragg degeneracy does not change significantly with radiation. In this report, we discuss these effects from the perspective of anisotropic Bragg diffraction and momentum mismatch, and we discuss the effect on the signal processing functionality.

More Details

Annotated bibliography National Environmental Policy Act (NEPA) documents for Sandia National Laboratories

Harris, Joan M.

The following annotated bibliography lists documents prepared by the Department of Energy (DOE), and predecessor agencies, to meet the requirements of the National Environmental Policy Act (NEPA) for activities and facilities at Sandia National Laboratories sites. For each NEPA document summary information and a brief discussion of content is provided. This information may be used to reduce the amount of time or cost associated with NEPA compliance for future Sandia National Laboratories projects. This summary may be used to identify model documents, documents to use as sources of information, or documents from which to tier additional NEPA documents.

More Details

Electrophoretically-deposited solid film lubricants

Dugger, Michael T.

An aqueous-based process that uses electrophoresis to attract powdered lubricant in suspension to a charged target was developed. The deposition process yields coatings with low friction, complies with environmental safety regulations, requires minimal equipment, and has several advantages over processes involving organic binders or vacuum techniques. This work focuses on development of the deposition process, includes an analysis of the friction coefficient of the material in sliding contact with stainless steel under a range of conditions, and a functional evaluation of coating performance in a precision mechanical device application. Results show that solid lubricant films with friction coefficients as low as 0.03 can be produced. A 0.03 friction coefficient is superior to solid lubricants with binder systems and is comparable to friction coefficients generated with more costly vacuum techniques.

More Details

An optically-triggered semiconductor switch for high power laser beams

Chow, Weng W.

The work involves research leading to an optically triggered switch for a high power laser pulse. The switch uses a semiconductor heterostructure whose optical properties are modified by a low power laser trigger such as a laser diode. Potential applications include optical control of pulsed power systems, control of medical lasers and implementation of security features in optical warhead architectures.

More Details

Velocity boundary conditions for vorticity formulations of the incompressible Navier-Stokes equations

Kempka, Steven N.

formulation to satisfy velocity boundary conditions for the vorticity form of the incompressible, viscous fluid momentum equations is presented. The tangential and normal components of the velocity boundary condition are satisfied simultaneously by creating vorticity adjacent to boundaries. The newly created vorticity is determined using a kinematical formulation which is a generalization of Helmholtz` decomposition of a vector field. Though it has not been generally recognized, these formulations resolve the over-specification issue associated with creating voracity to satisfy velocity boundary conditions. The generalized decomposition has not been widely used, apparently due to a lack of a useful physical interpretation. An analysis is presented which shows that the generalized decomposition has a relatively simple physical interpretation which facilitates its numerical implementation. The implementation of the generalized decomposition is discussed in detail. As an example the flow in a two-dimensional lid-driven cavity is simulated. The solution technique is based on a Lagrangian transport algorithm in the hydrocode ALEGRA. ALEGRA`s Lagrangian transport algorithm has been modified to solve the vorticity transport equation and the generalized decomposition, thus providing a new, accurate method to simulate incompressible flows. This numerical implementation and the new boundary condition formulation allow vorticity-based formulations to be used in a wider range of engineering problems.

More Details

Dynamic pulse buckling of cylindrical shells under axial impact: A comparison of 2D and 3D finite element calculations with experimental data

Hoffman, Edward L.

A series of tests investigating dynamic pulse buckling of a cylindrical shell under axial impact is compared to several 2D and 3D finite element simulations of the event. The purpose of the work is to investigate the performance of various analysis codes and element types on a problem which is applicable to radioactive material transport packages, and ultimately to develop a benchmark problem to qualify finite element analysis codes for the transport package design industry. Four axial impact tests were performed on 4 in-diameter, 8 in-long, 304 L stainless steel cylinders with a 3/16 in wall thickness. The cylinders were struck by a 597 lb mass with an impact velocity ranging from 42.2 to 45.1 ft/sec. During the impact event, a buckle formed at each end of the cylinder, and one of the two buckles became unstable and collapsed. The instability occurred at the top of the cylinder in three tests and at the bottom in one test. Numerical simulations of the test were performed using the following codes and element types: PRONTO2D with axisymmetric four-node quadrilaterals; PRONTO3D with both four-node shells and eight-node hexahedrons; and ABAQUS/Explicit with axisymmetric two-node shells and four-node quadrilaterals, and 3D four-node shells and eight-node hexahedrons. All of the calculations are compared to the tests with respect to deformed shape and impact load history. As in the tests, the location of the instability is not consistent in all of the calculations. However, the calculations show good agreement with impact load measurements with the exception of an initial load spike which is proven to be the dynamic response of the load cell to the impact. Finally, the PRONIT02D calculation is compared to the tests with respect to strain and acceleration histories. Accelerometer data exhibited good qualitative agreement with the calculations. The strain comparisons show that measurements are very sensitive to gage placement.

More Details

Characterization of polyurethane systems which contain low levels of free TDI

Thomas, Edward V.

EN-7, EN-8, and EN-9 are polyurethane systems that are used in numerous applications in the Department of Energy complex. These systems contain high levels of toluene diisocyanate (TDI). Currently, TDI is being treated as a suspect human carcinogen within the Department of Energy complex. This report documents the results of a material characterization study of three polyurethane systems that contain low levels of free (potentially airborne) TDI. The characterization has been accomplished by performing a set of statistically designed experiments. The purpose of these experiments is to explore the effects of formulation and cure schedule on various material properties. In general, the material properties (pot life, glass transition temperature, hardness, and tear strength) were relatively insensitive to variation in the cure schedule. On the other hand, variation in curative level had measurable effects on material properties for the polyurethane systems studied. Furthermore, the material properties of the three low-free-TDI polyurethane systems were found to be comparable or superior (for certain curative levels) to commonly-used polyurethane systems. Thus, these low-free-TDI systems appear to be viable candidates for applications where a polyurethane is needed.

More Details

DOE`s planning process for mixed low-level waste disposal

Chu, Sze-Tai Y.

A disposal planning process was established by the Department of Energy (DOE) Mixed Low-Level Waste (MLLW) Disposal Workgroup. The process, jointly developed with the States, includes three steps: site-screening, site-evaluation, and configuration study. As a result of the screening process, 28 sites have been eliminated from further consideration for MLLW disposal and 4 sites have been assigned a lower priority for evaluation. Currently 16 sites are being evaluated by the DOE for their potential strengths and weaknesses as MLLW disposal sites. The results of the evaluation will provide a general idea of the technical capability of the 16 disposal sites; the results can also be used to identify which treated MLLW streams can be disposed on-site and which should be disposed of off-site. The information will then serve as the basis for a disposal configuration study, which includes analysis of both technical as well as non-technical issues, that will lead to the ultimate decision on MLLW disposal site locations.

More Details

Comprehensive numerical model for cw vertical-cavity surface-emitting lasers

Hadley, G.R.

The authors present a comprehensive numerical model for vertical-cavity surface-emitting lasers that includes all major processes effecting cw operation of axisymmetric devices. In particular, the model includes a description of the 2D transport of electrons and holes through the cladding layers to the quantum well(s), diffusion and recombination processes of these carriers within the wells, the 2D transport of heat throughout the device, and a multi-lateral-mode effective index optical model. The optical gain acquired by photons traversing the quantum wells is computed including the effects of strained band structure and quantum confinement. They employ the model to predict the behavior of higher-order lateral modes in proton-implanted devices, and to provide an understanding of index-guiding in devices fabricated using selective oxidation.

More Details

Multivariate classification of BPSG thin films using Mahalanobis distances

Haaland, David M.

Infrared absorption spectra of borophosphosilicate glass (BPSG) thin films were collected to develop a rapid classification method for determining if the films are within the desired specifications. Classification of samples into good and bad categories was performed using principal component analysis applied to the spectra. Mahalanobis distances were used as the classification metric. The highest overall percentage of correct classification of samples based upon their spectra was 91.6%.

More Details

Cesium/oxide interactions for ultrathin films on {alpha}-Al{sub 2}O{sub 3}(0001) and {alpha}-Al{sub 2}O{sub 3}(1{bar 1}02)

Zavadil, Kevin R.

The interaction of cesium at the (0001) and (1{bar 1}02) surfaces of sapphire has been investigated using a variety of surface analytical techniques. Reflection mass spectrometric measurements yield initial Cs adsorption probabilities of 0.9 and 0.85 for the unreconstructed (0001) and (1{bar 1}02) surfaces, respectively. The adsorption probability decreases dramatically for these surfaces at critical Cs coverages of 2.O {times} 10{sup 14} and 3.4 {times} 10{sup 14} atoms/cm{sup 2}, respectively. Thermally induced reconstruction of the (0001) surface to form an oxygen deficient surface results in a decrease in the initial probability and capacity for Cs adsorption. Low energy electron diffraction (LEED) demonstrates that an intermediate, mixed domain surface yields an initial adsorption probability of 0.5 while a ({radical}31 {times} {radical}31) R {plus_minus} 9{degree} reconstructed surface yields a value of 0.27. Thermal desorption mass spectrometry (TDMS) shows that surface reconstruction eliminates the high binding energy states of Cs (2.7 eV/atom), consistent with the observed changes in adsorption probability. In contrast, reconstruction of the (1{bar 1}02) surface produces only minor changes in Cs adsorption. X-ray photoelectron spectroscopy (XPS) indicates that no formal reductive/oxidative chemistry takes place at the interface. We interpret the facile adsorption and strong binding of Cs on sapphire to result from Cs interacting with coordinatively unsaturated oxygen.

More Details

Functionalized block copolymers as adhesion promoters

Kent, Michael S.

The goal of this work is to develop novel functionalized block copolymers to promote adhesion at inorganic substrate/polymer interfaces. We envision several potential advantages of functionalized block copolymers over small molecule coupling agents. Greater control over the structure of the interphase region should result through careful design of the backbone of the copolymer. The number of chains per area, the degree of entanglement between the copolymer and the polymer matrix, the number of sites per chain able to attach to the substrate, and the hydrophobicity of the interphase region can all be strongly affected by the choice of block lengths and the monomer sequence. In addition, entanglement between the copolymer and the polymer matrix, if achieved, should contribute significantly to adhesive strength. Our program involves four key elements: the synthesis of suitable functionalized block copolymers, characterization of the conformation of the copolymers at the interface by neutron reflectivity and atomic force microscopy, characterization of the degree of bonding by spectroscopy, and measurement of the mechanical properties of the interface. In this paper we discuss block copolymers designed as adhesion promoters for the copper/epoxy interface. We have synthesized a diblock with one block containing imidazole groups to bond to copper and a second block containing secondary amines to react with the epoxy matrix. We have also prepared a triblock copolymer containing a hydrophobic middle block. Below we describe the synthesis of the block copolymers by living, ring-opening metathesis polymerization (ROMP) and the first characterization data obtained by neutron reflectivity.

More Details

New developments for sol-gel film and fiber processing

Hurd, A.J.

New insights into the development of microstructure in sol-gel films have recently been revealed by several diagnostic techniques, including imaging ellipsometry, {open_quotes}chemical imaging{close_quotes} by fluorescent tracers, light scattering from capillary waves, and finite-element modeling. The evolution of porosity during the continuous transition from dilute sol to porous solid in restricted geometries such as films and fibers is becoming clearer through fundamental understanding of evaporation dynamics and capillarity.

More Details

Many-body effects in semiconductor lasers

Chow, Weng W.

A microscopic theory, that is based on the coupled Maxwell-semiconductor-Bloch equations, is used to investigate the effects of many-body Coulomb interactions in semiconductor laser devices. This paper describes two examples where the many-body effects play important roles. Experimental data supporting the theoretical results are presented.

More Details

Health monitoring of operational structures -- Initial results

James, G.; Mayes, R.; Carne, T.; Simmermacher, T.; Goodding, J.

Two techniques for damage localization (Structural Translational and Rotational Error Checking -- STRECH and MAtriX COmpletioN -- MAXCON) are described and applied to operational structures. The structures include a Horizontal Axis Wind Turbine (HAWT) blade undergoing a fatigue test and a highway bridge undergoing an induced damage test. STRECH is seen to provide a global damage indicator to assess the global damage state of a structure. STRECH is also seen to provide damage localization for static flexibility shapes or the first mode of simple structures. MAXCON is a robust damage localization tool using the higher order dynamics of a structure. Several options arc available to allow the procedure to be tailored to a variety of structures.

More Details

Laser Tracker III: Sandia National Laboratories` third generation laser tracking system

Patrick, D.

At Sandia Labs` Coyote Canyon Test Complex, it became necessary to develop a precision single station solution to provide time space position information (tspi) when tracking airborne test vehicles. Sandia`s first laser tracker came on line in 1968, replacing the fixed camera technique for producing trajectory data. This system shortened data reduction time from weeks to minutes. Laser Tracker 11 began operations in 1982, replacing the original tracker. It incorporated improved optics and electronics, with the addition of a microprocessor-based real-time control (rtc) system within the main servo loop. The rtc added trajectory prediction with the loss of adequate tracking signal and automatic control of laser beam divergence according to target range. Laser Tracker III, an even more advanced version of the systems, came on line in 1990. Unlike LTII, which is mounted in a trailer and must by moved by a tractor, LTIII is mounted on its own four-wheel drive carrier. This allows the system to be used at even the most remote locations. It also incorporated improved optics and electronics with the addition of absolute ranging, acquisition on the fly, and automatic transition from manual Joystick tracking to laser tracking for aircraft tests. LTIII provides a unique state of the art tracking capability for missile, rocket sled, aircraft, submunition, and parachute testing. Used in conjunction with LTII, the systems together can provide either simultaneous or extended range tracking. Mobility, accuracy, reliability, and cost effectiveness enable these systems to support a variety of testing at Department of Energy and Department of Defense ranges.

More Details

Polarization characteristics, control, and modulation of vertical-cavity surface emitting lasers

Choquette, Kent D.

The gain-dependent polarization properties of vertical-cavity surface emitting lasers and methods for polarization control and modulation are discussed. The partitioning of power between the two orthogonal eigen polarizations is shown to depend upon the relative spectral alignment of the nondegenerate polarization cavity resonances with the laser gain spectrum. A dominant polarization can thus be maintained by employing a blue-shifted offset of the peak laser gain relative to the cavity resonance wavelength. Alternatively, the polarization can be controlled through use of anisotropic transverse cavity geometries. The orthogonal eigen polarizations are also shown to enable polarization modulation. By exploiting polarization switching transitions in cruciform lasers, polarization modulation of the fundamental mode up to 50 MHz is demonstrated. At lower modulation frequencies, complementary digital polarized output or frequency doubling of the polarized output is obtained. Control and manipulation of vertical-cavity laser polarization may prove valuable for present and future applications.

More Details

Comparison of lower-frequency (<1000 Hz) downhole seismic sources for use at environmental sites

Elbring, Gregory J.

In conjunction with crosswell seismic surveying being done at the Hanford Site in south-central Washington, four different downhole seismic sources have been tested between the same set of boreholes. The four sources evaluated were the Bolt airgun, the OYO-Conoco orbital vibrator, and two Sandia-developed vertical vibrators, one pneumatically-driven, and the other based on a magnetostrictive actuator. The sources generate seismic energy in the lower frequency range of less than 1000 Hz and have different frequency characteristics, radiation patterns, energy levels, and operational considerations. Collection of identical data sets with all four sources allows the direct comparison of these characteristics and an evaluation of the suitability of each source for a given site and target.

More Details

Using high-density magnetic and electromagnetic data for waste site characterization: A case study

Cochran, John R.

Magnetometers are frequently used to characterize hazardous waste sites. Due to cost and time considerations, data are typically collected on a coarse grid with nodes on 3 to 6 meter (m) centers. Hardware and software are now available which allow the rapid and cost effective collection of information on a much finer sampling grid. In this paper we present and compare total field magnetometery data collected on 3 m centers to total field magnetometery data collected on a grid with centers of 0.5 m or less. We also compare the magnetometery data to time-domain electromagnetic (EM) data collected on a 1 m by 0.2 m grid using the recently introduced Geonics Ltd. EM61 metal detector. All three data sets were collected at an abandoned landfill radioactive Burial Site No. 11 (RB-11) is located on Kirtland Air Force Base near Albuquerque, New Mexico.

More Details

NIR high-efficiency subwavelength diffractive structures in semiconductors

Smith, R.E.; Warren, M.E.; Wendt, J.R.; Vawter, G.A.

We have fabricated sub-wavelength diffractive optical elements with binary phase profiles for operation at 975 nm. Blazed transmission gratings with minimum features 63 nm wide were designed by using rigorous coupled-wave analysis and fabricated by direct-write e-beam lithography and reactive ion beam etching in gallium arsenide. Transmission measurements show 85% diffraction efficiency into the first order. Anti-reflection surfaces, with features 42 nm wide were also designed and fabricated.

More Details

Transport processes investigation: A necessary first step in site scale characterization plans

Roepke, C.

We propose an approach, which we call the Transport Processes Investigation or TPI, to identify and verify site-scale transport processes and their controls. The TPI aids in the formulation of an accurate conceptual model of flow and transport, an essential first step in the development of a cost effective site characterization strategy. The TPI is demonstrated in the highly complex vadose zone of glacial tills that underlie the Fernald Environmental Remediation Project (FEMP) in Fernald, Ohio. As a result of the TPI, we identify and verify the pertinent flow processes and their controls, such as extensive macropore and fracture flow through layered clays, which must be included in an accurate conceptual model of site-scale contaminant transport. We are able to conclude that the classical modeling and sampling methods employed in some site characterization programs will be insufficient to characterize contaminant concentrations or distributions at contaminated or hazardous waste facilities sited in such media.

More Details
Results 95751–95800 of 99,299
Results 95751–95800 of 99,299