Publications

Results 92751–92775 of 99,299

Search results

Jump to search filters

Nanometer-Scale Compositional Structure in III-V Semiconductor Heterostructures Characterized by Scanning Tunneling Microscopy

Journal of Vacuum Science Technology A

Biefeld, Robert M.

Nanometer-scale compositional structure in InAsxP1.InNYAsxPl.x-Y/InP, grown by gas-source molecular-beam epitaxy and in InAsl-xPJkAsl$b#InAs heterostructures heterostructures grown by metal-organic chemical vapor deposition has been characterized using cross-sectional scanning tunneling microscopy. InAsxP1-x alloy layers are found to contain As-rich and P-rich clusters with boundaries formed preferentially within (T 11) and (111) crystal planes. Similar compositional structure is observed within InNYAsxP1-x-Y alloy layers. Imaging of InAsl-xp@Asl#bY superlattices reveals nanometer-scale clustering within both the hAsI-.p and InAsl$bY alloy layers, with preferential alignment of compositional features in the direction. Instances are observed of compositional structure correlated across a heterojunction interface, with regions whose composition corresponds to a smaller unstrained lattice, constant relative to the surrounding alloy material appearing to propagate across the interface.

More Details

Piezoelectric Effects on the Optical Properties of GaN/Al(x)Ga(1-x)N Multiple Quantum Wells

Applied Physics Letters

Chow, Weng W.

Piezoelectric effects on the optical properties of GaN/AlGaN multiple quantum wells (MQWS) have been investigated by picosecond time-resolved photoluminescence (PL) measurements. For MQWS with well thickness 30 and 40 the excitonic transition peak positions at 10 K in continuous wave (CW) spectra are red-shifted with respect to the GaN epilayer by 17 meV and 57 meV, respectively. The time-resolved PL spectra of the 30 and 40 well MQWS reveal that the excitonic transition is in fact blue-shifted at early delay times due to quantum confinement of carriers. The spectral peak position shifts toward lower energies as the delay time increases and becomes red-shifted at longer delay times. We have demonstrated that the results described above is due to the presence of the piezoelectric field in the GaN wells of GaN/AlGaN MQWS subject to elastic strain together with screening of the photoexcited carriers. By comparing experimental and calculation results, we conclude that the piezoelectric field strength in GaN/Al.15G~.85N MQWS has a lower limit value of about 560 kV/cm: The electron and hole wave function distributions have also been obtained. The implication of our findings on the practical applications of GaN based optoelectronic devices is also discussed.

More Details

Reciprocal-Space Analysis of Compositional Modulation in Short-Period Superlattices Using Position-Sensitive X-Ray Detection

Journal of Materials Science: Materials in Electronics

Lee, Stephen R.

Epitaxial growth of AlAs-InAs short-period superlattices on (001) InP can lead to heterostructures exhibiting strong, quasi-periodic, lateral modulation of the alloy composition; transverse satellites arise in reciprocal space as a signature of the compositional modulation. Using an x-ray diffractometer equipped with a position-sensitive x-ray detector, we demonstrate reciprocal-space mapping of these satellites as an efficient, nondestructive means for detecting and characterizing the occurrence of compositional modulation. Systematic variations in the compositional modulation due to the structural design and the growth conditions of the short-period superlattice are characterized by routine mapping of the lateral satellites. Spontaneous compositional modulation occurs along the growth front during molecular-beam epitaxy of (AlAs) (InAs)n short-period superlattices. The modulation is quasi-periodic and forms a lateral superlattice superimposed on the intended SPS structure. Corresponding transverse satellites arise about each reciprocal lattice point, and x-ray diffraction can be routinely used to map their local reciprocal-space structure. The integrated intensity, spacing, orientation, and shape of these satellites provide a reliable means for nondestructively detecting and characterizing the compositional modulation in short-period superlattices. The analytical efficiency afforded by the use of a PSD has enabled detailed study of systematic vacations in compositional modulation as a function of the average composition, the period, and the growth rate of the short- period superlattice

More Details

Plasma Chemistries for High Density Plasma Etching of SiC

Journal of Electronic Materials

Shul, Randy J.

A variety of different plasma chemistries, including SF6, Cl2, IC1 and IBr, have been examined for dry etching of 6H-SiC in high ion density plasma tools (Inductively Coupled Plasma and Electron Cyclotron Resonance). Rates up to 4,500~"min-1 were obtained for SF6 plasmas, while much lower rates (S800~.min-') were achieved with Cl2, ICl and IBr. The F2- based chemistries have poor selectivity for SiC over photoresist masks (typically 0.4-0.5), but Ni masks are more robust, and allow etch depths 210pm in the SiC. A micromachining process (sequential etch/deposition (<2,000Angstrom min-1) for SiC steps) designed for Si produces relatively low etch rates.

More Details

III-Nitride Dry Etching - Comparison of Inductively Coupled Plasma Chemistries

Journal of Vacuum Science and Technology

Shul, Randy J.

A systematic study of the etch characteristics of GaN, AlN and InN has been performed with boron halides- (BI{sub 3} and BBr{sub 3}) and interhalogen- (ICl and IBr) based Inductively Coupled Plasmas. Maximum etch selectivities of -100:1 were achieved for InN over both GaN and AlN in the BI{sub 3} mixtures due to the relatively high volatility of the InN etch products and the lower bond strength of InN. Maximum selectivies of- 14 for InN over GaN and >25 for InN over AlN were obtained with ICl and IBr chemistries. The etched surface morphologies of GaN in these four mixtures are similar or better than those of the control sample.

More Details

Synthesis of Large Arrays of Well-Aligned Carbon Nanotubes on Glass

Science

Siegal, Michael P.

Free-standing aligned carbon nanotubes have previously been grown above 7000C on mesoporous silica embedded with iron nanoparticles. Here, carbon nanotubes aligned over areas up to several square centimeters were grown on nickel-coated glass below 666oC by plasma-enhanced hot filament chemical vapor deposition. Acetylene (C2H2) gas was used as the carbon source and ammonia (NH3) gas was used as a catalyst and dilution gas. Nanotubes with controllable diameters from 20 to 400 nanometers and lengths from 0.1 to 50 micrometers were obtained. Using this method, large panels of aligned carbon nanotubes can be made under conditions that are suitable for device fabrication.

More Details

Post Test Analysis of a PCCV Model Dynamically Tested Under Simulated Design-Basis Earthquakes

Cherry, J.; Chokshi, N.; James, R.J.; Rashid, Y.R.; Tsurumaki, S.; Zhang, L.

In a collaborative program between the United States Nuclear Regulatory Commission (USNRC) and the Nuclear Power Engineering Corporation (NUPEC) of Japan under sponsorship of the Ministry of International Trade and Ihdustry, the seismic behavior of Prestressed Concrete Containment Vessels (PCCV) is being investigated. A 1:10 scale PCCV model has been constructed by NUPEC and subjected to seismic simulation tests using the high performance shaking table at the Tadotsu Engineering Laboratory. A primary objective of the testing program is to demonstrate the capability of the PCCV to withstand design basis earthquakes with a significant safety margin against major damage or failure. As part of the collaborative program, Sandia National Laboratories (SNL) is conducting research in state-of-the-art analytical methods for predicting the seismic behavior of PCCV structures, with the eventual goal of understanding, validating, and improving calculations dated to containment structure performance under design and severe seismic events. With the increased emphasis on risk-informed- regulatory focus, more accurate ch&@erization (less uncertainty) of containment structural and functional integri~ is desirable. This paper presents results of post-test calculations conducted at ANATECH to simulate the design level scale model tests.

More Details

Data Rich, Information Poor

Kaplan, Paul G.

Surviving in a data-rich environment means understanding the difference between data and information. This paper reviews an environmental case study that illustrates that understanding and shows its importance. In this study, a decision problem was stated in terms of au economic-objective fimction. The function contains a term that defines the stochastic relationship between the decision and the information obtained during field chamctetition for an environmental contaminant. Data is defied as samples drawn or experimental realizations of a mudom fimction. Information is defined as the quantitative change in the value of the objective fiction as a result of the sample.

More Details

ATLAS: A Small, Light Weight, Time-Synchronized Wind-Turbine Data Acquistion System

Berg, Dale E.

Wind energy researchers at Sandia National Laboratories have developed a small, lightweight, time- synchronized, robust data acquisition system to acquire long-term time-series data on a wind turbine rotor. A commercial data acquisition module is utilized to acquire data simultaneously from multip!e strain-gauge, analog, and digital channels. Acquisition of rotor data at precisely the same times as acquisition of ground data is ensured by slaving the acquisition clocks on the rotor- based data unit and ground-based units to the Global Positioning Satellite (GPS) system with commercial GPS receiver units and custom-built and programmed programmable logic devices. The acquisition clocks will remain synchronized within two microseconds indefinitely. Field tests have confirmed that synchronization can be maintained at rotation rates in excess of 350 rpm, Commercial spread-spectrum radio modems are used to transfer the rotor data to a ground- based computer concurrently with data acquisition, permitting continuous acquisition of data over a period of several hours, days or even weeks.

More Details

Evaluation of 3 Commercially Available, On-Line TOC Analyzers for Monitoring Recycled Water in Semiconductor Processing

Ultrapure Water Journal

Degenova, J.; Donovan, R.P.; Morrison, D.

Rapid detection of excursions in the concentration of organic contaminants in water that is being recycled is crucial to the more widespread acceptance of rinse water recycling as a method of reducing water usage in semiconductor manufacturing. In 1995 SEMATECH'SS116 PTAB (Project Technical Advisory Board) arbitrarily targeted a response time of 30s as the goal for the on-line detection of TOC (Total Oxidizable Carbon) in water - a goal thought to simpliilj the design of water recycling systems (less volume required for water storage in the recycle loop) and lead to more widespread adoption of recycling of spent rinse waters by the US semiconductor industry. A subsequent evaluation of the TOC analyzers commercially available in early 1996 demonstrated that the fastest response times were on the order of three minutes ljllef. 1]. This paper updates the 1996 evaluation of commercially available TOC analyzers by assessing modified versions of two of the previously evaluated analyzers and also anew analyzer that became commercially available in 1997.

More Details

Esperanzaite, NaCa(2)Al(2)(As(5+)O(4))[As(5+)O(3)(OH)](OH)(2)F(4)(H(2)O), A New Mineral From Mina La Esperanza, Mexico: Descriptive Mineralogy and Atomic Arrangement

Canadian Mineralogist

Hlava, Paul F.

Esperanzaite, ideally NaCazA12(As5+0.i)[As5+03 (OH)] (OH)2FJH20), Z =2, is a new mineral from the Mina h Esperarq Durango State, Mexico. The mineral occurs as blue-green botryoidal crystalline masses on rhyolite, with separate spheres up to 1.5 mm Y Deceased in diameter. Mobs hardness is 4.5, specific gravity 3.240h, and 3.36( 3)C.IC. Optical properties were measured in 589 nm light. Esperanzaite is biaxial (-), .Y= Y = Z= colorless, a 1.580(1), ~ 1.588( 1), and y 1.593(1 ); 2V0hs is 74(1 ~ and 2 }'CUIC is 76.3". Dispersion is medium, r < v, and optic axes are oriented as a A Z = +50.5o, b = Y, c P. X = +35". The five strongest X-ray diffraction maxima in the powder pattern are (~ /, hk~: 2.966,100, 13 i, 31 i, 031 ; 3.527,90, 220; 2.700,90,221,002, 040; 5.364>80, 001, 020; 4.796,80,011. Esperanzaite is monoclinic, u 9.687(5), b 10.7379(6), c 5.5523(7)& ~ 105.32( 1 )", space group P21/nz. The atomic arrangement of esperanzaite was solved by Direct Methods and Fourier analysis (R= 0.03 1). The Fundamental Building Block is formed of stacks of heteropolyhedral tetramers; the tetramers are formed of two arsenate tetrahedral and two Al octahedra, comer-linked in 4-member rings. The Fundamental Building Blocks are linked by irregular lda~j and Ca@ polyhedra.

More Details

GaN: Defect and Device Issues

Applied Physics Review

Shul, Randy J.

The role of extended and point defects, and key impurities such as C, O and H, on the electrical and optical properties of GaN is reviewed. Recent progress in the development of high reliability contacts, thermal processing, dry and wet etching techniques, implantation doping and isolation and gate insulator technology is detailed. Finally, the performance of GaN-based electronic and photonic devices such as field effect transistors, UV detectors, laser diodes and light-emitting diodes is covered, along with the influence of process-induced or grown-in defects and impurities on the device physics.

More Details

Enhancement of the Two-Dimensional Conduction Electron Zeeman Energy Near v=1 by Optical Dynamic Nuclear Polarization

Physical Review Letters

Simmons, Jerry A.

Enhancement of the Zeeman energy of 2D conduction electrons near v = 1 by optical dynamic nuclear polarization (lINP), as observed by the Overhauser shift of the transport detected electron spin resonance, is measured quantitatively for the first time in GaAs/AIGaAs mukiquantum wells. The NMR signal enhancement is obtained under similar conditions in the same sample, allowing the hyperke coupling constant of 3.7T between between the nuclei and 2D conduction electrons to be measured for the first time. The potential to suppress the Zeeman energy by optical DNP is discussed in the context of its potential influence on Skyrmion formation.

More Details

Russia-U.S. Joint Program on the Safe Management of Nuclear Materials: Approaches to Prioritizing the Lab to Lab Project

Young, Mary L.

The U.S. and Russian weapons dismantlement process is producing hundreds of tons of excess plutonium (Pu) and highly enriched uranium (HEU) fissile materials. The nuclear operations associated with the final disposition of these materials will be occurring in both countries for decades. A significant accident during these operations could delay the disposition process. Russia- U.S. collaborative efforts to address safety issues associated with disposition processes have been ongoing since 1993. The experience of these collaborative efforts have demonstrated the need for a systematic and formalized approach to identifjring and prioritizing collaborative projects. A systematic approach to the successfid implementation of a formal program will require the definition of year by year program objectives, specific technical program areas, a process for the prioritization and selection of projects, and identification of performance measures to evaluate the success of projects. Specialized working groups established for each technical area are needed to define research priorities, review research proposals, and recommend proposals for tiding. A systematic approach to the establishment of a formal U.S.-Russia cooperative program will serve to ensure the safety and continuity of disposition processes and reduce the nuclear proliferation risks presented by this material. The U.S. and Russian weapons dismantlement process is producing hundreds of tons of excess plutonium (Pu) and highly enriched uranium (HEU) fissile materials. The U.S. and Russia are both converting and blending HEU into low enriched uranium (LEU) for use in existing reactors. Russia also plans to fiel reactors with excess Pu. The U.S. is on a two-path approach for the disposition of excess Pu: (1) use of Pu in existing reactors and/or (2) immobilization of the Pu in glass or ceramics followed by geologic disposal. The fissile nuclear materials storage, handling, processing, and transportation processes associated with the disposition process will be occurring in both countries for decades. A significant accident at any point in the process could significantly delay the disposition process. Russia-U.S. collaborative efforts to address safety issues associated with nuclear processes required for the disposition of excess weapons grade nuclear materials were initiated in response to the 1993 Tomsk-7 accident. A joint Russia-U.S. team evaluated the causes of an explosion in a nuclear fuel reprocessing tank at the Tomsk-7.

More Details

Laser Engineered Net Shaping (LENS(TM)): A Tool for Direct Fabrication of Metal Parts

Atwood, Clinton L.

For many years, Sandia National Laboratories has been involved in the development and application of rapid prototyping and dmect fabrication technologies to build prototype parts and patterns for investment casting. Sandia is currently developing a process called Laser Engineered Net Shaping (LENS~) to fabricate filly dense metal parts dwectly from computer-aided design (CAD) solid models. The process is similar to traditional laser-initiated rapid prototyping technologies such as stereolithography and selective laser sintering in that layer additive techniques are used to fabricate physical parts directly from CAD data. By using the coordinated delivery of metal particles into a focused laser beam apart is generated. The laser beam creates a molten pool of metal on a substrate into which powder is injected. Concurrently, the substrate on which the deposition is occurring is moved under the beam/powder interaction zone to fabricate the desired cross-sectiwal geometry. Consecutive layers are additively deposited, thereby producing a three-dmensional part. This process exhibits enormous potential to revolutionize the way in which metal parts, such as complex prototypes, tooling, and small-lot production parts, are produced. The result is a comple~ filly dense, near-net-shape part. Parts have been fabricated from 316 stainless steel, nickel-based alloys, H13 tool steel, and titanium. This talk will provide a general overview of the LENS~ process, discuss potential applications, and display as-processed examples of parts.

More Details

Understanding Thermal Behavior in Lens Processing of Structural Materials

Griffith, Michelle L.

In direct laser metal deposition technologies, such as the Laser (LENS) process, it is important to understand and control the Engineered Net Shaping thermal behavior during fabrication. With this control, components can be reliably fabricated with desired structural material properties. This talk will describe the use of contact and imaging techniques to monitor the thermal signature during LENS processing. Recent results show a direct correlation between thermal history and material properties, where the residual stress magnitude decreases as the laser power, and therefore thermal signature, increases. Development of an understanding of solidification behavior, residual stress, and microstructural evolution with respect to thermal behavior will be discussed.

More Details

Inductively Coupled Plasma and Electron Cyclotron Resonance Plasma Etching of InGaAlP Compound Semiconductor System

Solid State and Materials Science

Shul, Randy J.

Current and future generations of sophisticated compound semiconductor devices require the ability for submicron scale patterning. The situation is being complicated since some of the new devices are based on a wider diversity of materials to be etched. Conventional IUE (Reactive Ion Etching) has been prevalent across the industry so far, but has limitations for materials with high bond strengths or multiple elements. IrI this paper, we suggest high density plasmas such as ECR (Electron Cyclotron Resonance) and ICP (Inductively Coupled Plasma), for the etching of ternary compound semiconductors (InGaP, AIInP, AlGaP) which are employed for electronic devices like heterojunction bipolar transistors (HBTs) or high electron mobility transistors (HEMTs), and photonic devices such as light-emitting diodes (LEDs) and lasers. High density plasma sources, opeiating at lower pressure, are expected to meet target goals determined in terms of etch rate, surface morphology, surface stoichiometry, selectivity, etc. The etching mechanisms, which are described in this paper, can also be applied to other III-V (GaAs-based, InP-based) as well as III-Nitride since the InGaAIP system shares many of the same properties.

More Details

Inductively Coupled Plasma Etching of III-V Antimonides in BCl(3)/Ar and Cl(2)/Ar

Journal of Vacuum Science and Technology

Shul, Randy J.

Inductively coupled plasma (ICP) etching characteristics of GaSb and AIGaAsSb have been investigated in BC13/Ar and Clz/Ar plasmas. The etch rates and selectivity between GaSb and AIGaAsSb are reported as functions of plasma chemistry, ICP power, RF self-bias, and chamber pressure. It is found that physical sputtering resorption of the etch products plays a dominant role in BC13/Ar ICP etching, while in Clz/Ar plasma, the chemical reaction dominates the etching. GaSb etch rates exceeding 2 ~rnhnin are achieved in Clz/Ar plasmas with smooth surfaces and anisotropic profiles. In BC13/Ar plasmas, etch rates of 5100 Mmin and 4200 Mmin are obtained for GaSb and AIGaAsSb, respectively. The surfaces of both GaSb and AIGaAsSb etched in BC13/Ar plasmas remain smooth and stoichiometric over the entire range of plasma conditions investigated. This result is attributed to effective removal of etch products by physical sputtering. For a wide range of plasma conditions, the selectivity between GaSb and AIGaAsSb is close to unity, which is desirable for fabricating etched mirrors and gratings for Sb-based mid-IR laser diodes.

More Details

Analysis of Decentralized Variable Structure Control for Collective Search by Mobile Robots

Goldsmith, Steven Y.

This paper presents an analysis of a decentralized coordination strategy for organizing and controlling a team of mobile robots performing collective search. The alpha-beta coordination strategy is a family of collective search algorithms that allow teams of communicating robots to implicitly coordinate their search activities through a division of labor based on self-selected roIes. In an alpha-beta team. alpha agents are motivated to improve their status by exploring new regions of the search space. Beta a~ents are conservative, and reiy on the alpha agents to provide advanced information on favorable regions of the search space. An agent selects its current role dynamically based on its current status value relative to the current status values of the other team members. Status is determined by some function of the agent's sensor readings, and is generally a measurement of source intensity at the agent's current location. Variations on the decision rules determining alpha and beta behavior produce different versions of the algorithm that lead to different global properties. The alpha-beta strategy is based on a simple finite-state machine that implements a form of Variable Structure Control (VSC). The VSC system changes the dynamics of the collective system by abruptly switching at defined states to alternative control laws . In VSC, Lyapunov's direct method is often used to design control surfaces which guide the system to a given goal. We introduce the alpha-beta aIgorithm and present an analysis of the equilibrium point and the global stability of the alpha-beta algorithm based on Lyapunov's method.

More Details

Chemically Selective Coated Quartz Crystal Microbalance (QCM) Array for Detection of Volatile Organic Chemicals

Martin, Steve W.

Liquid flow cells have been fabricated to prepare an array of QCMS operating simultaneously for detection and identification of VOCS in water. TWO signals, a tlequency response and a damping voltage response, were obtained per resonator. A blank QCM was used as a reference to account for changes in liquid density and viscosity. Nine different polymer coatings applied using a spin coat technique have been examined for VOC response under liquid flow conditions. A matrix of three classes of VOCS were examined for each coating with four chemicals in each class. The three classes of VOCS are polar, nonpolar and chlorinated. A pattern recognition technique, called visually empirical region of influence (VERI), was used to cluster the responses in n-dimensional space. Chemicals within a class varying by only one methyl group (e.g., toluene and xylene) are easily discriminated using only two different coatings with three different QCM responses. All chemicak were easily separated and detected with a total of 5 films and 6 responses with >99% accuracy.

More Details

Statistical Tests of System Linearity Based on the Method of Surrogate Data

Paez, Thomas L.

When dealing with measured data from dynamic systems we often make the tacit assumption that the data are generated by linear dynamics. While some systematic tests for linearity and determinism are available - for example the coherence fimction, the probability density fimction, and the bispectrum - fi,u-ther tests that quanti$ the existence and the degree of nonlinearity are clearly needed. In this paper we demonstrate a statistical test for the nonlinearity exhibited by a dynamic system excited by Gaussian random noise. We perform the usual division of the input and response time series data into blocks as required by the Welch method of spectrum estimation and search for significant relationships between a given input fkequency and response at harmonics of the selected input frequency. We argue that systematic tests based on the recently developed statistical method of surrogate data readily detect significant nonlinear relationships. The paper elucidates the method of surrogate data. Typical results are illustrated for a linear single degree-of-freedom system and for a system with polynomial stiffness nonlinearity.

More Details

Z: A Fast Pulsed Power Generator for Ultra-High Magnetic Field Generation

Spielman, Rick

Advances in fast, pulsed-power technologies have resulted in the development of very high current drivers that have current rise times - 100 ns. The largest such pulsed power drive r today is the new Z accelerator located at Sandia National Laboratories in Albuquerque, New Mexico. Z is capable of delivering more than 20 MA with a time-to-peak of 105 ns to low inductance (- 1 nH)loads. Such large drivers are capable of directly generating magnetic fields approaching 3 kT in small, 1 -cm3, volumes. In addition to direct field generation, Z can be used to compress an applied, axial seed field with a plasma. Flux compression scheme~: are not new and are, in fact, the basis of all explosive flux-compression generators but we propose the use of plasma armatures rather than solid, conducting armatures. We will present experimental results from the Z accelerator in which magnetic fields - 2 kT are generated and measured with several diagnostics. Issues such as energy loss in solid conductors and dynamic response of current-carrying conductors to very large magnetic fields will be reviewed in context with Z experiments. We will describe planned flux-compression experiments that are expected to create the highest-magnitude uniform-field volumes yet attained in the laboratory.

More Details

Elastic Wave Radiation from a Line Source of Finite Length

Aldridge, David F.

Straightforward algebraic expressions describing the elastic wavefield produced by a line source of finite length are derived in circular cylindrical coordinates. The surrounding elastic medium is assumed to be both homogeneous and isotropic, anc[ the source stress distribution is considered axisymmetic. The time- and space-domain formulae are accurate at all distances and directions from the source; no fa-field or long-wavelength assumptions are adopted for the derivation. The mathematics yield a unified treatment of three different types of sources: an axial torque, an axial force, and a radial pressure. The torque source radiates only azirnuthally polarized shear waves, whereas force and pressure sources generate simultaneous compressional and shear radiation polarized in planes containing the line source. The formulae reduce to more familiar expressions in the two limiting cases where the length of the line source approaches zero and infinity. Far-field approximations to the exact equations indicate that waves radiated parallel to the line source axI.s are attenuated relative to those radiated normal to the axis. The attenuation is more severe for higher I?equencies and for lower wavespeeds. Hence, shear waves are affected more than compressional waves. This fi-equency- and directiondependent attenuation is characterized by an extremely simple mathematical formula, and is readily apparent in example synthetic seismograms.

More Details
Results 92751–92775 of 99,299
Results 92751–92775 of 99,299