Publications

Results 92726–92750 of 99,299

Search results

Jump to search filters

Inductively Coupled Plasma Etching in ICl- and IBr-Based Chemistries: Part I. GaAs, GaSb and AlGaAs

Plasma Chemistries and Plasma Processes

Shul, Randy J.

High density plasma etching of GaAs, GaSb and AIGaAs was performed in IC1/Ar and lBr/Ar chemistries using an Inductively Coupled Plasma (ICP) source. GaSb and AlGaAs showed maxima in their etch rates for both plasma chemistries as a function of interhalogen percentage, while GaAs showed increased etch rates with plasma composition in both chemistries. Etch rates of all materials increased substantially with increasing rf chuck power, but rapidly decreased with chamber pressure. Selectivities > 10 for GaAs and GaSb over AlGaAs were obtained in both chemistries. The etched surfaces of GaAs showed smooth morphology, which were somewhat better with IC1/Ar than with IBr/& discharge. Auger Electron Spectroscopy analysis revealed equi-rate of removal of group III and V components or the corresponding etch products, maintaining the stoichiometry of the etched surface.

More Details

Inductively Coupled Plasma Etching in ICl- and IBr-Based Chemistries: Part II. InP, InSb, InGaP and InGaAs

Plasma Chemistries and Plasma Processes

Shul, Randy J.

A parametric study of Inductively Coupled Plasma etching of InP, InSb, InGaP and InGaAs has been carried out in IC1/Ar and IBr/Ar chemistries. Etch rates in excess of 3.1 prrdmin for InP, 3.6 prnh-nin for InSb, 2.3 pm/min for InGaP and 2.2 ~rrdmin for InGaAs were obtained in IBr/Ar plasmas. The ICP etching of In-based materials showed a general tendency: the etch rates increased substantially with increasing the ICP source power and rf chuck power in both chemistries, while they decreased with increasing chamber pressure. The IBr/Ar chemistry typically showed higher etch rates than IC1/Ar, but the etched surface mophologies were fairly poor for both chemistries.

More Details

Reactive Ion Beam Etching of GaAs and Related Compounds in an Inductively Coupled Plasma of Cl(2)-Ar Mixture

Journal of Vacuum Science and Technology B

Abernathy, C.R.; Hahn, Y.B.; Hays, D.; Lambers, E.S.; Lee, J.W.; Pearton, S.J.; Shul, R.J.; Vawter, G.A.

More Details

Redistribution of Implanted Dopants in GaN

Journal of Electronic Materials

Rieger, Dennis J.

Donor (S, Se and Te) and acceptor (Mg, Be and C) dopants have been implanted into GaN at doses of 3-5x1014 cm-2 and annealed at temperatures up to 1450 *C. No redistribution of any of the elements is detectable by Secondary Ion Mass Spectrometry, except for Be, which displays an apparent damage-assisted diffusion at 900 "C. At higher temperatures there is no further movement of the Be, suggesting that the point defect flux that assists motion at lower temperatures has been annealed. Effective diffusivities are <2X 1013 cm2.sec-1 at 1450 `C for each of the dopants in GaN.

More Details

Ultra High Temperature Rapid Thermal Annealing of GaN

Materials Issues in Semiconductor Process

Rieger, Dennis J.

All of the major acceptor (Mg, C, Be) and donor (Si, S, Se and Te) dopants have been implanted into GaN films grown on A1203 substrates. Annealing was performed at 1100- 1500 C, using AIN encapsulation. Activation percentages of >90Y0 were obtained for Si+ implantation annealed at 1400 C, while higher temperatures led to a decrease in both carrier concentration and electron mobility. No measurable redistribution of any of the implanted dopants was observed at 1450 C.

More Details

Wetting of a Chemically Heterogeneous Surface

Journal of Chemical Physics

Frink, L.J.D.; Salinger, A.G.

Theories for inhomogeneous fluids have focused in recent years on wetting, capillary conden- sation, and solvation forces for model systems where the surface(s) is(are) smooth homogeneous parallel plates, cylinders, or spherical drops. Unfortunately natural systems are more likely to be hetaogeneous both in surt%ce shape and surface chemistry. In this paper we discuss the conse- quences of chemical heterogeneity on wetting. Specifically, a 2-dimensional implementation of a nonlocal density functional theory is solved for a striped surface model. Both the strength and range of the heterogeneity are varied. Contact angles are calculated, and phase transitions (both the wetting transition and a local layering transition) are located. The wetting properties of the surface ase shown to be strongly dependent on the nature of the surface heterogeneity. In addition highly ordered nanoscopic phases are found, and the operational limits for formation of ordered or crystalline phases of nanoscopic extent are discussed.

More Details

Analyses of a Reinforced Concrete Containment with Liner Corrosion Damage

Smith, Jeffrey A.

Incidents of liner corrosion in nuclear power containment structures have been recorded. These incidents and concerns of other possible liner corrosion in containment have prompted an interest in determining g the capacity of a degraded containment. Finite element analyses of a typical pressurized water reactor (PWR) reinforced concrete containment with liner corrosion were conducted using the A13AQUS finite element code with the ANACAP-U nonlinear concrete constitutive model. The effect of liner corrosion on containment capacity was investigated. A loss of coolant accident was simulated by applying pressure and temperature changes to the structure without corrosion to determine baseline failure limits, followed by multiple analyses of the containment with corrosion at different locations and varying degrees of liner degradation. The corrosion locations were chosen at the base of the containment wall, near the equipment hatch, and at the midheight of the containment wall. Using a strain-based failure criterion the different scenarios were evaluated to prioritize their effect on containment capacity

More Details

Ion Beam Induced Charge Collection (IBICC) from Integrated Circuit Test Structures Using a 10 MeV Carbon Microbeam

Renfrow, Steven N.

As future sizes of Integrated Circuits (ICs) continue to shrink the sensitivity of these devices, particularly SRAMs and DRAMs, to natural radiation is increasing. In this paper, the Ion Beam Induced Charge Collection (IBICC) technique is utilized to simulate neutron-induced Si recoil effects in ICS. The IBICC measurements, conducted at the Sandia National Laboratories employed a 10 MeV carbon microbeam with 1pm diameter spot to scan test structures on specifically designed ICS. With the aid of layout information, an analysis of the charge collection efficiency from different test areas is presented. In the present work a 10 MeV Carbon high-resolution microbeam was used to demonstrate the differential charge collection efficiency in ICS with the aid of the IC design Information. When ions strike outside the FET, the charge was only measured on the outer ring, and decreased with strike distance from this diode. When ions directly strike the inner and ring diodes, the collected charge was localized to these diodes. The charge for ions striking the gate region was shared between the inner and ring diodes. I The IBICC measurements directly confirmed the interpretations made in the earlier work.

More Details

Multidimensional Analysis of Quenching: Comparison of Inverse Techniques

Dowding, Kevin J.

Understanding the surface heat transfer during quenching can be beneficial. Analysis to estimate the surface heat transfer from internal temperature measurements is referred to as the inverse heat conduction problem (IHCP). Function specification and gradient adjoint methods, which use a gradient search method coupled with an adjoint operator, are widely u led methods to solve the IHCP. In this paper the two methods are presented for the multidimensional case. The focus is not a rigorous comparison of numerical results. Instead after formulating the multidimensional solutions, issues associated with the numerical implementation and practical application of the methods are discussed. In addition, an experiment that measured the surface heat flux and temperatures for a transient experimental case is analyzed. Transient temperatures are used to estimate the surface heat flux, which is compared to the measured values. The estimated surface fluxes are comparable for the two methods.

More Details

Data Collection and Analysis Techniques for Evaluating the Perceptual Qualities of Auditory Stimuli

Miner, Nadine E.

This paper describes a general methodological framework for evaluating the perceptual properties of auditory stimuli. The framework provides analysis techniques that can ensure the effective use of sound for a variety of applications including virtual reality and data sonification systems. Specifically, we discuss data collection techniques for the perceptual qualities of single auditory stimuli including identification tasks, context-based ratings, and attribute ratings. In addition, we present methods for comparing auditory stimuli, such as discrimination tasks, similarity ratings, and sorting tasks. Finally, we discuss statistical techniques that focus on the perceptual relations among stimuli, such as Multidimensional Scaling (MDS) and Pathfinder Analysis. These methods are presented as a starting point for an organized and systematic approach for non-experts in perceptual experimental methods, rather than as a complete manual for performing the statistical techniques and data collection methods. It is our hope that this paper will help foster further interdisciplinary collaboration among perceptual researchers, designers, engineers, and others in the development of effective auditory displays.

More Details

Utilizing Gauss-Hermite Quadrature to Evaluate Uncertainty in Dynamic System Response

Field, R.V.; Paez, T.L.; Red-Horse, J.R.

Probabilistic uncertainty is a phenomenon that occurs to a certain degree in many engineering!~ applications. The effects that the uncertainty has upon a given system response is a matter of some concern. Techniques which provide insight to these effects will be required as modeling and prediction become a more vital tool in the engineering design process. As might be expected, this is a difficult proposition and the focus of many research efforts. The purpose of this paper is to outline a procedure to evaluate uncertainty in dynamic system response exploiting Gauss-Hermite numerical quadrature. Specifically numerical integration techniques are utilized in conjunction with the Advanced Mean Value method to efficiently and accurately estimate moments of the response process. A numerical example illustrating the use of this analytical tool in a practical framework is presented.

More Details

Particle Velocity and Deposition Efficiency in the Cold Spray Process

Journal of Thermal Spray Technology

Gilmore, D.L.

Copper powder was sprayed by the cold-gas dynamic method. In-flight particle velocities were measured with a laser-two-focus system as a function of process parameters such as gas temperature, gas pressure, and powder feed rate. Particle velocities were uniform in a relatively large volume within the plume and agreed with theoretical predictions. The presence of the substrate was found to have no significant effect on particle velocities. Cold-spray deposition efficiencies were measured on aluminum substrates as a function of particle velocity and incident angle of the plume. Deposition efficiencies of up to 95% were achieved. The critical velocity for deposition was determined to be about 640 meters per second. This work investigates both the in-flight characteristics of copper particles in a supersonic cold-spray plume and the build-up of the subsequent coating on aluminum substrates. Velocities were found to be relatively constant within a large volume of the plume. Particle counts dropped off sharply away from the central axis. The presence of a substrate was found to have no effect on the velocity of the particles. A substantial mass-loading effect on the particle velocity was observed; particle velocities begin to drop as the mass ratio of powder to gas flow rates exceeds 3%. The measured variation of velocity with gas pressure and pre-heat temperature was in fairly good agreement with theoretical predictions. Helium may be used as the driving gas instead of air in order to achieve higher particle velocities for a given temperature and pressure. Coating deposition efficiencies were found to increase with particle velocity and decrease with gun- substrate angle. There did not appear to be any dependence of the deposition efficiency on coating thickness. A critical velocity for deposition of about 640 mk appears to fit the data well. The cold-spray technique shows promise as a method for the deposition of materials which are thermally sensitive or may experience rapid oxidation under typical thermal spray conditions. High deposition efficiencies are achievable for certain coating-substrate conditions. Work remains to determine the material and microstructural properties which govern the coating process.

More Details

UV-Photoassisted Etching of GaN in KOH

Journal of Electronic Materials

Shul, Randy J.

The etch rate of GaN under W-assisted photoelectrochemical conditions in KOH solutions is found to be a strong function of illumination intensity, solution molarity, sample bias and material doping level. At low e-h pair generation rates, grain boundaries are selectively etched, while at higher illumination intensities etch rates for unintentionally doped (n - 3x 10^12Gcm-3) GaN are 2 1000 .min-l. The etching is diffusion limited under our conditions with an activation energy of - 0.8kCal.mol-1. The etched surfaces are rough, but retain their stoichiometry. PEC etching is found to selectively reveal grain boundaries in GaN under low light illumination conditions. At high lamp powers the rates increase with sample temperature and the application of bias to the PEC cell, while they go through a maximum with KOH solution molarity. The etching is diffusion-limited, producing rough surface morphologies that are suitable in a limited number of device fabrication steps. The surfaces however appear to remain relatively close to their stoichiometric composition.

More Details

Electron-Anode Interactions in Particle-in-Cell Simulations of Applied-B Ion Diodes

Physics of Plasmas

Vesey, Roger A.

Particle-in-cell simulations of applied-B ion diodes using the QUICKSILVER code have been augmented with Monte Carlo calculations of electron-anode interactions (reflection and energy deposition). Extraction diode simulations demonstrate a link between the instability evolution and increased electron loss and anode heating. Simulations of radial and extraction ion diodes show spatial non-uniformity in the predicted electron loss profile leading to hot spots on the anode that rapidly exceed the 350-450 {degree}C range, known to be sufficient for plasma formation on electron-bombarded surfaces. Thermal resorption calculations indicate complete resorption of contaminants with 15-20 kcal/mole binding energies in high-dose regions of the anode during the power pulse. Comparisons of parasitic ion emission simulations and experiment show agreement in some aspects; but also highlight the need for better ion source, plasma, and neutral gas models.

More Details

Composition and Bonding in Amorphous Carbon Films Grown by Ion Beam Assisted Deposition: Influence of the Assistance Voltage

Diamond and Related Materials

Banks, James C.

Amorphous carbon films have been grown by evaporation of graphite with concurrent Ar+ ions bombardment assistance. The ion energy has been varied between 0-800 V while keeping a constant ion to carbon atom arrival ratio. Film composition and density were determined by ion scattering techniques (RBS and ERDA), indicating a negligible hydrogen content and a density dependence with the assistance voltage. The bonding structure of the films has been studied by Raman and X-ray Absorption Near-Edge (XANES) spectroscopy. Different qualitative effects have been found depending on the ion energy range. For ion energies below 300 eV, there is a densification of the carbon layer due to the increase in the sp3 content. For ion energies above 300 eV sputtering phenomena dominate over densification, and thinner films are found with increasing assistance voltage until no film is grown over 600 V. The films with the highest SP3 content are grown with intermediate energies between 200-300 V.

More Details

A Method for Connecting Dissimilar Finite Element Meshes in Three Dimensions

International Journal for Numerical Methods in Engineering

Dohrmann, Clark R.

A method is presented for connecting dissimilar finite element meshes in three dimensions. The method combines the concept of master and slave surfaces with the uniform strain approach for surface, corrections finite elements- By modifyhg the are made to element formulations boundaries of elements on the slave such that first-order patch tests are passed. The method can be used to connect meshes which use different element types. In addition, master and slave surfaces can be designated independently of relative mesh resolutions. Example problems in three-dimensional linear elasticity are presented.

More Details

Lessons Learned from WIPP Site Characteriztion, Performance Assessment, and Regulatory Review Related to Radionuclide Migration through Water-Conducting Features

Beauheim, Richard L.

Many lessons have been learned over the past 24 years as the Waste Isolation Pilot Plant (WIPP) project has progressed from initial site characterization to final licensing that may be of relevance to other nuclear-waste-disposal projects. These lessons pertain to the manner in which field and laboratory investigations are planned, how experiments are interpreted, how conceptual and numerical models are developed and simplified~ and how defensibility and credibility are achieved and maintained. These lessons include 1) Site characterization and performance assessment (PA) should evolve together through an iterative process, with neither activity completely dominating the other. 2) Defensibility and credibility require a much greater depth of understanding than can be represented in PA models. 3) Experimentalists should be directly involved in model and parameter abstraction and simplification for PA. 4) External expert review should be incorporated at all stages of a project~ not just after an experiment or modeling activity is completed. 5) Key individuals should be retained for the life of a project or a process must be established to transfer their working knowledge to new individuals. 6) An effective QA program needs to be stable and consistent for the duration of a project and rests on best scientific practices. All of these lessons relate to the key point that consideration must be given from the earliest planning stages to maximizing the defensibility and credibility of all work.

More Details

Flow-Dimension Analysis of Hydraulic Tests to Characterize Water-Conducting Features

Beauheim, Richard L.

Most analytical solutions and computer codes for well-test analysis assume a radial flow geometry around a well even though actual flow geometries can be quite different particularly in fractured media. Accurate estimation of hydraulic parameters requires knowledge of the flow geometry. Flow dimensions, representing the combined effects of flow geometry and variations in hydraulic properties, em be interpreted from the late-time slope of the pressure derivative on a log-log plot. However, the interpreted flow dimensions could be caused by an infinite number of flow geometry and hydraulic property combinations. Identifying the correct flow geometry so that appropriate hydraulic properties can be calculated is a difficult process, requiring additional information from a variety of sources. Defining a "conservative" model for a system with nonradial flow dimensions is problematic at best. Errors are compounded when hydraulic properties interpreted by force-fitting radial model to tests in nonradial systems are used in flow and transport models that also fail to take proper account of flow geometry. Whatever the flow dimension of a system might be, proper test interpretation and careful model construction, calibration, and testing are required to provide accurate modeling of flow and transport in that system.

More Details

Use of Z-Pinch Techniques for Equation of State Applications

Asay, J.R.

A principal goal of the shock physics program at Sandia is to establish a capability to make accurate equation of state (EOS) measurements on the Z pulsed radiation source. The Z accelerator is a source of intense x-ray radiation, which can be used to drive ablative shocks for EOS studies. With this source, ablative multi shocks can be produced to study materials over the range of interest to both weapons and ICF physics programs. In developing the capability to diagnose these types of studies on Z, techniques commonly used in conventional impact generated experimental were implemented. The primary diagnostic presently being used for this work is velocity interferometry, VISAR, which not only provides Hugoniot particle velocity measurements, but also measurements of non-shock EOS measurements, such as isentropic compression. In addition to VISAR capability, methods for measuring shock velocity have also been developed for shock studies on Z. When used in conjunction with the Rankine- Hugoniot jump conditions, material response at high temperatures and pressures can be inferred. Radiation in the Z accelerator is produced when approximately 18 MA are passed through a cylindrical wire array typically 20 to 50 mm in diameter and 10 to 20 mm in height. 200-300 wires with initial diameters on the order of 8 to 20 micron form, upon application of the current, a plasma shell, which is magnetically imploded until it collapses and stagnates on axis, forming a dense plasma emitter in the shape of a column, referred to as a" z pinch". The initial wire array and subsequent plasma pinch are confined within a metallic can, referred to as a primary hohlraum, which serves as both a current return path and a reflective surface to contain the radiation. Attached to openings in the primary hohlraum wall are smaller tubes referred to as secondaries. Multiple secondaries can be fielded on most experiments, which are the typical location for mounting EOS samples. In this configuration, the secondary S1 contains two separate VISAR probes for making velocity measurements at different material thicknesses. By correlating the resulting velocity profiles in time, a measurement of shock velocity can be determined. In addition, the velocity profiles provide the Hugoniot particle velocity after the records were impedance-matched. Secondaries S2 and S3 provide measurements of shock velocity using laser light reflected from steps. As the shock arrives at each of these surfaces, the surface reflectivity significantly decreases, which causes a sharp drop in return light. The shock velocity can be inferred from shock arrival at different steps The z-pinch technique is particularly useful for producing high amplitude shock waves for EOS applications. An alternative approach for using Z is to produce shockless loading directly with the magnetic pressure in the accelerator.

More Details

The Electrical Properties of Native and Deposited Thin Aluminum Oxide Layers on Aluminum: Hydration Effects

Sullivan, John P.

The electronic defect density of native, anodic, and synthetic Al oxide layers on Al were studied by solid state electrical measurement as a function of hydration OF the oxide. The non-hydrated synthetic Al oxide layers, which included electron cyclotron resonance (ECR) plasma deposited oxides as well as ECR plasma grown oxides, were highly insulating with electrical transport dominated by thermal emission from deep traps within the oxide. Following hydration these oxides and the native oxides exhibited a large increase in electronic defect density as evidenced by increases in the DC leakage current, reduction in the breakdown field, and increase in AC conductance. Elastic recoil detection of hydrogen revealed that hydration leads to hydrogen incorporation in the oxide films and hydrogen injection through the films into the Al layer below. The increase in electronic defect concentration is related to this hydrogenation and may play a significant role in localized corrosion initiation.

More Details

Biosimmer: A Virtual Reality Simulator for Training First Responders in a BW Scenario

Stansfield, S.A.

BioSimMER (Bioterrorism Simulated Medical Emergency Response) is a Virtual Reality-based mission rehearsal and training environment. BioSimMER employs contingency-oriented, multiple-path algorithms and MOESINIOPS focused on real-world operations. BioSimMER is network-based and immerses multiple trainees in a high resolution synthetic environment, including virtual casualties and instruments that they may interact with and manipulate. Trainees are represented as individuals by virtual human Avatars. The simulation consists of several components: virtual casualties dynamically manifest the symptoms of their injuries and respond to the intervention of the trainees. Agent transport analysis is used to simulate casualty exposures and to drive the responses of simulated sensors/detectors. The selected prototype scenario is representative of combined injuries anticipated in BW operations.

More Details

Stress Isotherms of Porous Thin Materials: Theoretical Predictitions From a Nonlocal Density Functional Theory

Langmuir

Frink, L.J.D.; Van Swol, F.

Recent beam bending (BB) experiments of microporous t31rns with very small pores have shown that the fluid confined in these pores exhibits monotonic compressive stresses as the relative pressure is varied from vacuum to saturation (relative vapor pressure, p/p. = 1). The variation of the stress near saturation is found to be linear in hz(p) and given by the saturated liquid density to within 20%. Capillary condensed fluids are traditionally described by the Laplace-Kelvin (LK) theory. LK theory correctly predicts the slope of the stress near saturation to be pl, but also predicts that the stress should be zero at saturation and tensile between saturation aud the capillary transition pressure. Hence LK theory does not capture the monotonic compressive stress observed in BB experiments. This report describes the results of density functional theory calculations for a simple fluid continued to a slit pore network. We show how the presence of even a small amount of polydispersity in pore size leads to both a monotonic compressive stress as well as the observed LK slope.

More Details

Solvation Effects in Self-Assembled Systems

Frink, L.J.D.

Many types of self-assembly can be found in nature. They include crystallization, the formation of micelles, and the folding of proteins. Recently there has been much interest in pursuing nano-to-microscopically engineered materials by way of self-assembly on imprinted or templated surfaces. In all of these diverse cases, wetting plays a critical role in the assembly process. Wetting involves the interactions of the substrate or amphiphilic molecule or macromolecule with a solvent. In many self-assembled systems we find that the critical feature of the system is a substrate! or macromolecule with a both hydrophilic and hydrophobic nature. In this paper we discuss the wetting properties of a striped surface where the stripes represent alternating chemical characteristics. We show how the chemical heterogeneity affects the wetting properties of the surface (e.g. the static contact angle), and discuss the length limitations on the soft lithography approach. In this paper, the wetting of a chemically heterogeneous surface is studied using a nonlocal Density Functional Theory (DFT). The results for the heterogeneous surface model we discuss have immediate implications for soft-lithography by self-assembly. It also lends fundamental insight into the mechanisms controlling self-assembly of macromolecules. We present the results of nonlocal 2D DFT calculations on the wetting properties of chemically heterogeneous surfaces. These calculations showed complex density distributions and phase behavior as a result of the heterogeneity. The location of the wetting transition are found to be strongly dependent on the extent and strength of the heterogeneity, and complete wetting was suppressed altogether if the hydrophobic parts of the surface were large enough. In these cases, the condensed nanophase may crystallize if the hydrophilic surface-fluid interactions are strong enough. By exploring the phase space including strength of hydrophilic interactions and extent of chemical heterogeneity, an operational phase diagram was established that could be used for designing nanoscopically tailored devices and materials.

More Details
Results 92726–92750 of 99,299
Results 92726–92750 of 99,299