Publications

Results 88151–88200 of 99,299

Search results

Jump to search filters

Science-based material modeling activities at Sandia National Laboratories/California : an overview

Chen, Er-Ping

The purpose of this presentation is to provide an overview of the science-based materials modeling activities at Sandia National Laboratories, California. The main mission driver for the work is the development of predictive modeling and simulation capabilities leveraging high performance computing software and hardware. Presentation will highlight research accomplishments in several specific topics of current interest. Sandia/California has been engaged in the development of high performance computing based predictive modeling and simulation capabilities in support of the Science-Based Stockpile Stewardship Program of the U. S. Department of Energy. Of particular interest is the development of constitutive models that can efficiently and accurately predict post-failure material response and load-redistribution in systems and components. Fracture and failure are inherently multi-scale and our philosophy is to include required physics in our models at all appropriate scales. We approach the problems from the continuum point of view and intend to provide continuum models that include dominant subscale mechanisms. Moreover, numerical algorithms are needed to allow implementation of physical models in high performance computing codes such that large-scale modeling and simulation can be conducted. Other drivers of our effort include the emerging application of micro- and nano-systems and the increasing interest in biotechnology. In this presentation, our research in fracture and failure modeling, atomic-continuum coupling code development, microstructure-material properties relationships exploration, and general continuum theories advancement will be presented. Where appropriate, examples will be given to demonstrate the utility of the models.

More Details

Survey of eigenproblem treatment in quantum chemistry and density functional theory

Muller, Richard P.

{sm_bullet}HF/DFT are one-particle approximation to the Schrodinger equation {sm_bullet} The one-particle, mean field approaches are what lead to the nonlinear eigenvalue problem {sm_bullet} DFT includes a parameterized XC functional that reproduces many-electron effects -Very accurate ground state structures and energies - Problematic for excited states, band gaps

More Details

Computational studies of face-to-face porphyrin catalyzed reduction of dioxygen

Muller, Richard P.; Ingersoll, David

We are investigating the use of face-to-face porphyrin (FTF) materials as potential oxygen reduction catalysts in fuel cells. The FTF materials were popularized by Anson and Collman, and have the interesting property that varying the spacing between the porphyrin rings changes the chemistry they catalyze from a two-electron reduction of oxygen to a four-electron reduction of oxygen. Our goal is to understand how changes in the structure of the FTF materials lead to either two-electron or four-electron reductions. This understand of the FTF catalysis is important because of the potential use of these materials as fuel cell electrocatalysts. Furthermore, the laccase family of enzymes, which has been proposed as an electrocatalytic enzyme in biofuel cell applications, also has family members that display either two-electron or four electron reduction of oxygen, and we believe that an understanding of the structure-function relationships in the FTF materials may lead to an understanding of the behavior of laccase and other enzymes. We will report the results of B3LYP density functional theory studies with implicit solvent models of the reduction of oxygen in several members of the cobalt FTF family.

More Details

Global view of nonlinear dynamics in coupled-cavity lasers : a bifurcation study

Proposed for publication in Optics Communications.

Wieczorek, Sebastian M.; Chow, Weng W.

This paper investigates nonlinear behavior of coupled lasers. Composite-cavity-mode approach and a class-B description of the active medium are used to describe nonlinearities associated with population dynamics and optical coupling. The multimode equations are studied using bifurcation analysis to identify regions of stable locking, periodic oscillations, and complicated dynamics in the parameter space of coupling-mirror transmission T and normalized cavity-length mismatch dL/{lambda}. We further investigate the evolution of the key bifurcations with the linewidth enhancement factor {alpha}. In particular, our analysis reveals the formation of a gap in the lockband that is gradually occupied by instabilities. We also investigate effects of the cavity-length on chaotic dynamics.

More Details

Self-Assembly of biologically inspired complex functional materials

Proposed for publication in the Materials Research Society Bulletin.

Brinker, C.J.

Nature combines hard and soft materials, often in hierarchical architectures, to get synergistic, optimized properties with proven, complex functionalities. Emulating such natural designs in robust engineering materials using efficient processing approaches represents a fundamental challenge to materials chemists. This presentation will review progress on understanding so-called 'evaporation-induced silica/surfactant self-assembly' (EISA) as a simple, general means to prepare porous thin-film nanostructures. Such porous materials are of interest for membranes, low-dielectric-constant (low-k) insulators, and even 'nano-valves' that open and close in response to an external stimulus. EISA can also be used to simultaneously organize hydrophilic and hydrophobic precursors into hybrid nanocomposites that are optically or chemically polymerizable, patternable, or adjustable. In constructing composite structures, a significant challenge is how to controllably organize or define multiple materials on multiple length scales. To address this challenge, we have combined sol-gel chemistry with molecular self-assembly in several evaporation-driven processing procedures collectively referred to as evaporation-induced self-assembly (EISA). EISA starts with a silica/water/surfactant system diluted with ethanol to create a homogeneous solution. We rely on ethanol and water evaporation during dip-coating (or other coating methods) to progressively concentrate surfactant and silica in the depositing film, driving micelle formation and subsequent continuous self-assembly of silica/surfactant thin film mesophases. One of the crucial aspects of this process, in terms of the sol-gel chemistry, is to work under conditions where the condensation rate of the hydrophilic silicic acid precursors (Si-OH) is minimized. The idea is to avoid gelation that would kinetically trap the system at an intermediate non-equilibrium state. We want the structure to self-assemble then solidify, with the addition of a siloxane condensation catalyst or by heating, to form the desired mesostructured product. Operating at an acidic pH (pH = 2) minimizes the condensation rate of silanols to form siloxanes Si-O-SiIn addition, hydrogen bonding and electrostatic interactions between silanols and hydrophilic surfactant head groups can further reduce the condensation rate. These combined factors maintain the depositing film in a fluid state, even beyond the point where ethanol and water are largely evaporated. This allows the deposited film to be self-healing and enables the use of virtually any evaporation-driven process (spin-coating, inkjet printing, or aerosol processing) to create ordered nanostructured films, patterns, or particles.

More Details

Sublimation rates of explosive materials : method development and initial results

Phelan, James M.

Vapor detection of explosives continues to be a technological basis for security applications. This study began experimental work to measure the chemical emanation rates of pure explosive materials as a basis for determining emanation rates of security threats containing explosives. Sublimation rates for TNT were determined with thermo gravimetric analysis using two different techniques. Data were compared with other literature values to provide sublimation rates from 25 to 70 C. The enthalpy of sublimation for the combined data was found to be 115 kJ/mol, which corresponds well with previously reported data from vapor pressure determinations. A simple Gaussian atmospheric dispersion model was used to estimate downrange concentrations based on continuous, steady-state conditions at 20, 45 and 62 C for a nominal exposed block of TNT under low wind conditions. Recommendations are made for extension of the experimental vapor emanation rate determinations and development of turbulent flow computational fluid dynamics based atmospheric dispersion estimates of standoff vapor concentrations.

More Details

Design, simulation, and application of quasi-spherical z-pinch implosions driven by tens of mega-amperes

Proposed for publication in Physics of Plasmas.

Nash, Thomas J.; Leeper, Ramon J.; McDaniel, Dillon H.; Deeney, Christopher D.; Sanford, Thomas W.L.; Struve, Kenneth

A quasi-spherical z-pinch may directly compress foam or deuterium and tritium in three dimensions as opposed to a cylindrical z-pinch, which compresses an internal load in two dimensions only. Because of compression in three dimensions the quasi-spherical z-pinch is more efficient at doing pdV work on an internal fluid than a cylindrical pinch. Designs of quasi-spherical z-pinch loads for the 28 MA 100 ns driver ZR, results from zero-dimensional (0D) circuit models of quasi-spherical implosions, and results from 1D hydrodynamic simulations of quasi-spherical implosions heating internal fluids will be presented. Applications of the quasi-spherical z-pinch implosions include a high radiation temperature source for radiation driven experiments, a source of neutrons for treating radioactive waste, and a source of fusion energy for a power generator.

More Details

Nanoparticles for suppression of dewetting of thin polymer films for use in chemical sensors

Giunta, Rachel K.

Addition of fullerenes (C60 or buckyballs) to a linear polymer has been found to eliminate dewetting when a thin (?50 nm) film is exposed to solvent vapor. Based on neutron reflectivity measurements, it is found that the fullerenes form a coherent layer approximately 2 nm thick at the substrate--polymer film interface during the spin-coating process. The thickness and relative fullerene concentration (?29 vol%) is not altered during solvent vapor annealing and it is thought this layer forms a solid-like buffer shielding the adverse van der Waals forces promoted by the underlying substrate. Several polymer films produced by spin- or spray-coating were tested on both silicon wafers and live surface acoustic wave sensors demonstrating fullerenes stabilize many different polymer types, prepared by different procedures and on various surfaces. Further, the fullerenes drastically improve sensor performance since dewetted films produce a sensor that is effectively inoperable.

More Details

On the Held-Karp relaxation for the asymmetric and symmetric traveling salesman problems

Mathematical Programming

Carr, Robert D.

A long-standing conjecture in combinatorial optimization says that the integrality gap of the famous Held-Karp relaxation of the metric STSP (Symmetric Traveling Salesman Problem) is precisely 4/3. In this paper, we show that a slight strengthening of this conjecture implies a tight 4/3 integrality gap for a linear programming relaxation of the metric ATSP (Asymmetric Traveling Salesman Problem). Our main tools are a new characterization of the integrality gap for linear objective functions over polyhedra, and the isolation of "hard-to-round" solutions of the relaxations. © Springer-Verlag 2004.

More Details

An explanation for the minimal effect of body curvature on hypervelocity penetration hole formation

International Journal of Solids and Structures

Dechant, Lawrence

Though not discussed extensively in the literature, it is known among workers in impact and penetration dynamics, e.g. the CTH analysis and development team at Sandia National Laboratories, that curvature of thin plates has a minimal effect on the penetration hole diameter due to a hypervelocity impact. To understand why curvature introduces a minimal effect on penetration hole size we extend a flat plate penetration hole diameter relationship (De Chant (2004a) Unpublished manuscript; De Chant (2004b) Mechanics of Materials, in press) to include the effect of body curvature. The effect of the body curvature on the hole diameter is shown to scale according to the dimensionless plate thickness to radius of curvature of the body i.e. h/R, which is typically small. Indeed for most problems where a single layer shell (plate) can be meaningfully defined, the effect of curvature upon hole diameter is on the order of other uncertainties in the problem, e.g. doubts concerning the appropriate equation of state and strength model, and is often, therefore, negligible. © 2004 Published by Elsevier Ltd.

More Details

A generalized approximation for the thermophoretic force on a free-molecular particle

Aerosol Science and Technology

Gallis, Michael A.; Rader, Daniel J.; Torczynski, John R.

A general, approximate expression is described that can be used to predict the thermophoretic force on a free-molecular, motionless, spherical particle suspended in a quiescent gas with a temperature gradient. The thermophoretic force is equal to the product of an order-unity coefficient, the gas-phase translational heat flux, the particle cross-sectional area, and the inverse of the mean molecular speed. Numerical simulations are used to test the accuracy of this expression for monatomic gases, polyatomic gases, and mixtures thereof. Both continuum and noncontinuum conditions are examined; in particular, the effects of low pressure, wall proximity, and high heat flux are investigated. The direct simulation Monte Carlo (DSMC) method is used to calculate the local molecular velocity distribution, and the force-Green's-function method is used to calculate the thermophoretic force. The approximate expression is found to predict the calculated thermophoretic force to within 10% for all cases examined.

More Details

A response-modeling approach to characterization and propagation of uncertainty specified over intervals

Reliability Engineering and System Safety

Rutherford, Brian

Computational simulation methods have advanced to a point where simulation can contribute substantially in many areas of systems analysis. One research challenge that has accompanied this transition involves the characterization of uncertainty in both computer model inputs and the resulting system response. This article addresses a subset of the 'challenge problems' posed in [Challenge problems: uncertainty in system response given uncertain parameters, 2001] where uncertainty or information is specified over intervals of the input parameters and inferences based on the response are required. The emphasis of the article is to describe and illustrate a method for performing tasks associated with this type of modeling 'economically'-requiring relatively few evaluations of the system to get a precise estimate of the response. This 'response-modeling approach' is used to approximate a probability distribution for the system response. The distribution is then used: (1) to make inferences concerning probabilities associated with response intervals and (2) to guide in determining further, informative, system evaluations to perform. © 2004 Elsevier Ltd. All rights reserved.

More Details

Simulations of the pipe overpack to compute constitutive model parameters for use in WIPP room closure calculations

Park, Byoung; Hansen, Francis D.

The regulatory compliance determination for the Waste Isolation Pilot Plant includes the consideration of room closure. Elements of the geomechanical processes include salt creep, gas generation and mechanical deformation of the waste residing in the rooms. The WIPP was certified as complying with regulatory requirements based in part on the implementation of room closure and material models for the waste. Since the WIPP began receiving waste in 1999, waste packages have been identified that are appreciably more robust than the 55-gallon drums characterized for the initial calculations. The pipe overpack comprises one such waste package. This report develops material model parameters for the pipe overpack containers by using axisymmetrical finite element models. Known material properties and structural dimensions allow well constrained models to be completed for uniaxial, triaxial, and hydrostatic compression of the pipe overpack waste package. These analyses show that the pipe overpack waste package is far more rigid than the originally certified drum. The model parameters developed in this report are used subsequently to evaluate the implications to performance assessment calculations.

More Details

Automated infrasound signal detection algorithms implemented in MatSeis - Infra Tool

Hart, Darren

MatSeis's infrasound analysis tool, Infra Tool, uses frequency slowness processing to deconstruct the array data into three outputs per processing step: correlation, azimuth and slowness. Until now, an experienced analyst trained to recognize a pattern observed in outputs from signal processing manually accomplished infrasound signal detection. Our goal was to automate the process of infrasound signal detection. The critical aspect of infrasound signal detection is to identify consecutive processing steps where the azimuth is constant (flat) while the time-lag correlation of the windowed waveform is above background value. These two statements describe the arrival of a correlated set of wavefronts at an array. The Hough Transform and Inverse Slope methods are used to determine the representative slope for a specified number of azimuth data points. The representative slope is then used in conjunction with associated correlation value and azimuth data variance to determine if and when an infrasound signal was detected. A format for an infrasound signal detection output file is also proposed. The detection output file will list the processed array element names, followed by detection characteristics for each method. Each detection is supplied with a listing of frequency slowness processing characteristics: human time (YYYY/MM/DD HH:MM:SS.SSS), epochal time, correlation, fstat, azimuth (deg) and trace velocity (km/s). As an example, a ground truth event was processed using the four-element DLIAR infrasound array located in New Mexico. The event is known as the Watusi chemical explosion, which occurred on 2002/09/28 at 21:25:17 with an explosive yield of 38,000 lb TNT equivalent. Knowing the source and array location, the array-to-event distance was computed to be approximately 890 km. This test determined the station-to-event azimuth (281.8 and 282.1 degrees) to within 1.6 and 1.4 degrees for the Inverse Slope and Hough Transform detection algorithms, respectively, and the detection window closely correlated to the theoretical stratospheric arrival time. Further testing will be required for tuning of detection threshold parameters for different types of infrasound events.

More Details

Inspection strategy for LIGA microstructures using a programmable optical microscope

Ceremuga, Joseph T.; Aigeldinger, Georg

The LIGA process has the ability to fabricate very precise, high aspect ratio mesoscale structures with microscale features [l]. The process consists of multiple steps before a final part is produced. Materials native to the LIGA process include metals and photoresists. These structures are routinely measured for quality control and process improvement. However, metrology of LIGA structures is challenging because of their high aspect ratio and edge topography. For the scale of LIGA structures, a programmable optical microscope is well suited for lateral (XU) critical dimension measurements. Using grayscale gradient image processing with sub-pixel interpolation, edges are detected and measurements are performed. As with any measurement, understanding measurement uncertainty is necessary so that appropriate conclusions are drawn from the data. Therefore, the abilities of the inspection tool and the obstacles presented by the structures under inspection should be well understood so that precision may be quantified. This report presents an inspection method for LIGA microstructures including a comprehensive assessment of the uncertainty for each inspection scenario.

More Details

A user's guide to Sandia's latin hypercube sampling software : LHS UNIX library/standalone version

Swiler, Laura P.; Wyss, Gregory D.

This document is a reference guide for the UNIX Library/Standalone version of the Latin Hypercube Sampling Software. This software has been developed to generate Latin hypercube multivariate samples. This version runs on Linux or UNIX platforms. This manual covers the use of the LHS code in a UNIX environment, run either as a standalone program or as a callable library. The underlying code in the UNIX Library/Standalone version of LHS is almost identical to the updated Windows version of LHS released in 1998 (SAND98-0210). However, some modifications were made to customize it for a UNIX environment and as a library that is called from the DAKOTA environment. This manual covers the use of the LHS code as a library and in the standalone mode under UNIX.

More Details

Wave-form optimization for a 60 MA Z-Pinch driver

McDaniel, Dillon H.

A new Z-pinch driver is being planned by Sandia National Laboratories (SNL) that will provide up to 16 MJ of X-ray radiation. Two load designs are being considered. One is a double Z-pinch configuration, with each load providing 7 MJ radiation. The other is a single Z-pinch configuration that produces 16 MJ. Both configurations require 100 to 120 ns implosion times, and radiation pulse widths of less than 10 ns. These requirements translate into two 40 MA drivers for the double-sided load, and a 60 MA driver for the single-load configuration. The design philosophy for this machine is to work from the load out. Radiation requirements determine the current, pulsewidth, and load-inductance requirements. These parameters set the drive wave-form and insulator voltage, which in turn determine the insulator-stack design. The goal is to choose a drive wave-form that meets the load requirements while optimizing efficiency and minimizing breakdown risk.

More Details

Measures of effectiveness:an annotated bibliography

Campbell, Philip L.

The purpose of this report is to provide guidance, from the open literature, on developing a set of ''measures of effectiveness'' (MoEs) and using them to evaluate a system. Approximately twenty papers and books are reviewed. The papers that provide the clearest understanding of MoEs are identified (Sproles [46], [48], [50]). The seminal work on value-focused thinking (VFT), an approach that bridges the gap between MoEs and a system, is also identified (Keeney [25]). And finally three examples of the use of VFT in evaluating a system based on MoEs are identified (Jackson et al. [21], Kerchner & Deckro [27], and Doyle et al. [14]). Notes are provided of the papers and books to pursue in order to take this study to the next level of detail.

More Details

ITS strategic test plan : revision 1.0

Lorence, Leonard; Franke, Brian C.; Kensek, Ronald P.; Laub, Thomas W.; Barteau, Lisa A.

This test plan describes the testing strategy for the ITS (Integrated-TIGER-Series) suite of codes. The processes and procedures for performing both verification and validation tests are described. ITS Version 5.0 was developed under the NNSA's ASC program and supports Sandia's stockpile stewardship mission.

More Details

Testing thermocline filler materials and molten-salt heat transfer fluids for thermal energy storage systems used in parabolic trough solar power plants

Brosseau, Douglas A.; Hlava, Paul F.; Kelly, Michael J.

Parabolic trough power systems that utilize concentrated solar energy to generate electricity are a proven technology. Industry and laboratory research efforts are now focusing on integration of thermal energy storage as a viable means to enhance dispatchability of concentrated solar energy. One option to significantly reduce costs is to use thermocline storage systems, low-cost filler materials as the primary thermal storage medium, and molten nitrate salts as the direct heat transfer fluid. Prior thermocline evaluations and thermal cycling tests at the Sandia National Laboratories' National Solar Thermal Test Facility identified quartzite rock and silica sand as potential filler materials. An expanded series of isothermal and thermal cycling experiments were planned and implemented to extend those studies in order to demonstrate the durability of these filler materials in molten nitrate salts over a range of operating temperatures for extended timeframes. Upon test completion, careful analyses of filler material samples, as well as the molten salt, were conducted to assess long-term durability and degradation mechanisms in these test conditions. Analysis results demonstrate that the quartzite rock and silica sand appear able to withstand the molten salt environment quite well. No significant deterioration that would impact the performance or operability of a thermocline thermal energy storage system was evident. Therefore, additional studies of the thermocline concept can continue armed with confidence that appropriate filler materials have been identified for the intended application.

More Details

Investigation of reliability method formulations in Dakota/UQ

Proposed for publication in Structure and Infrastructure Engineering: Maintenance, Management, Life-Cycle Design & Performance.

Wojtkiewicz, Steven F.

Reliability methods are probabilistic algorithms for quantifying the effect of simulation input uncertainties on response metrics of interest. In particular, they compute approximate response function distribution statistics (probability, reliability and response levels) based on specified input random variable probability distributions. In this paper, a number of algorithmic variations are explored for both the forward reliability analysis of computing probabilities for specified response levels (the reliability index approach (RIA)) and the inverse reliability analysis of computing response levels for specified probabilities (the performance measure approach (PMA)). These variations include limit state linearizations, probability integrations, warm starting and optimization algorithm selections. The resulting RIA/PMA reliability algorithms for uncertainty quantification are then employed within bi-level and sequential reliability-based design optimization approaches. Relative performance of these uncertainty quantification and reliability-based design optimization algorithms are presented for a number of computational experiments performed using the DAKOTA/UQ software.

More Details

Validating DOE's Office of Science "capability" computing needs

Leland, Robert W.; Camp, William J.

A study was undertaken to validate the 'capability' computing needs of DOE's Office of Science. More than seventy members of the community provided information about algorithmic scaling laws, so that the impact of having access to Petascale capability computers could be assessed. We have concluded that the Office of Science community has described credible needs for Petascale capability computing.

More Details
Results 88151–88200 of 99,299
Results 88151–88200 of 99,299