The irradiation embrittlement of neutron shield tank (NST) material (A212 Grade B steel) from the Shippingport reactor has been characterized. Irradiation increases the Charpy transition temperature (CTT) by 23--28{degrees}C (41--50{degrees}F) and decreases the upper-shelf energy. The shift in CTT is not as severe as that observed in high-flux isotope reactor (HFIR) surveillance specimens. However, the actual value of the CTT is higher than that for the HFIR data. The increase in yield stress is 51 MPa (7.4 ksi), which is comparable to HFIR data. The NST material is weaker in the transverse orientation than in the longitudinal orientation. Some effects of position across the thickness of the wall are also observed; the CTT shift is slightly greater for specimens from the inner region of the wall. Annealing studies indicate complete recovery from embrittlement after 1 h at 400{degrees}C (752{degrees}F). Although the weld metal is significantly tougher than the base metal, the shifts in CTT are comparable. The shifts in CTT for the Shippingport NST are consistent with the test and Army reactor data for irradiations at <232{degrees}C (<450{degrees}F) and show very good agreement with the results for HFIR A212-B steel irradiated in the Oak Ridge Research Reactor (ORR). The effects of irradiation temperature, fluence rate, and neutron flux spectrum are discussed. The results indicate that fluence rate has no effect on radiation embrittlement at rates as low as 2 {times} 10{sup 8} n/cm{sup 2}{center dot}s and at the low operating temperatures of the Shippingport NST, i.e., 55{degrees}C (130{degrees}F). This suggests that the accelerated embrittlement of HFIR surveillance samples is most likely due to the relatively higher proportion of thermal neutrons in the HFIR spectrum compared to that for the test reactors. 28 refs., 25 figs.
An analysis of thermosyphoning in a stream generator model is presented. The model considers the transient development of buoyancy-driven steam flow in the steam generator tubing, secondary side heat transfer and an inlet plenum mixing model. Numerical solutions are obtained for conditions intended to simulate the natural circulation phenomena in a 3-Loop pressurized water reactor in a loss-of-coolant accident scenario. The relation between the circulation rate and the heating rate is determined. The sensitivity of the model to various key parameters is examined. 16 refs.
The drive designed and built by the Solar Power Engineering Company (SPECO) for its large area heliostat failed under high wind loads during a winter storm. This report details the testing and analysis done to verify the load capabilities of the rebuilt heliostat drive. Changes in design and improvements in fabrication resulted in a usable drive. 12 figs., 7 tabs.
Data are presented from the 18 W/m{sup 2} Mockup for Defense High-Level Waste, a very large scale in situ test fielded underground at the Waste Isolation Pilot Plant (WIPP). These data include selected fielding information, test configuration, instrumentation activities, and comprehensive results from a large number of gages. The results in this report give measured data from the mechanical response gages, i.e., room closure gages, extensometers, and stress meters emplaced in the test. Construction of the test began in June 1984; gage data in this report cover the complete test duration, that is, to June 1990.
Coaxial transmission cells have been developed for testing optical fiber current sensors. Three of these cells are airlines that provide transverse electromagnetic mode operation to 1.0, 2.3, and 13.7 GHz. Standing wave ratios are <1.5 for the unloaded airlines over their given frequency ranges. Solid and liquid dielectric coaxial cells use materials with high relative permittivities, >9.1. A ceramic test cell has a useful frequency range to 2.5 GHz; the liquid cells, filled with propanol, methanol, or water, are good to {approximately}500 MHz. The properties of the liquid cells are described using a model of a multilayer coaxial dielectric system with complex relative permittivities. 15 refs.
Structural calculations were performed to evaluate the source-term nuclear fuels transport cask (ST Cask) under various hypothetical accident scenarios. (1) Three-dimensional transient dynamic analyses were performed to evaluate the strength of the cask`s end-closure clamp mechanism. The calculations were performed for two impact orientations: a side impact and a 20{degrees} corner impact. The calculations identified three weaknesses in the clamp design: a gap designed between the clamp and the cask provides a deformation mode which loosens the clamp, two unconstrained swing bolts used to fasten the clamp can lose preload and come free; and insufficient stiffness of the clamp in torsion. (2) An axisymmetric finite element model was used to evaluate the dynamics of end-drops from 5 and 10 ft. The calculations show that loads generated in the end-drops could break the payload support cable and damage the payload winch. Lead slump resulted in both end-drop calculations. The stresses generated in the cask wall during the end-drops was insufficient to cause buckling. (3) To determine the factor of safety to yield, calculations in which the cask was treated as a beam loaded under its own weight were performed for two support configurations: simply supported at both ends and simply supported at the center (trunnion loading). (4) The survival of the cask from a 1-m drop onto a mild steel punch was evaluated based on equations derived from empirical data. The calculations showed that the ST Cask could survive such an event. (5) Finally, the bolt configuration for the upper-closure was analyzed and determined to be inadequate because it does not prevent the closure from sliding relative to the cask body. Specific recommendations for design changes are made in the report to eliminate identified problems.
A major thrust of the Atmospheric Radiation Measurements (ARM) Program is the establishment of 5 primary and 4 supplementary Cloud and Radiation Testbed (CART) sites. The CART sites will provide the means to acquire the necessary data to test and further develop the components of GCMs (General Circulation Models) which describe the relationships between the characteristics of the atmosphere and the solar and thermal radiation which passes through it. The CART Locale Recommendation Team has presented a priority-ordered set of recommended locales for the primary and supplementary sites, along with alternatives for each. The selection was based primarily on the following criteria: geographical and climatological homogeneity; occurrence of climatologically important cloud types; seasonal change of surface properties; variability of radiatively-active atmospheric components; synergism with other programs; and manageable logistics. An additional criterion was that, taken together, the set of recommended locales must span a broad range of climate regimes. The recommended primary locales include two land and three ocean locales. The first CART Site will be established in the Southern Great Plains (SGP) of the US. The next CART site to be established on land is to be in the polar regions, on the North Slope of Alaska (NSA).
Thermal and mechanical models for intact and jointed rock mass behavior are being developed, verified, and validated at Sandia National Laboratories for the Yucca Mountain Site Characterization Project. Benchmarking is an essential part of this effort and is one of the tools used to demonstrate verification of engineering software used to solve thermomechanical problems. This report presents the results of the third (and final) phase of the first thermomechanical benchmark exercise. In the first phase of this exercise, nonlinear heat conduction code were used to solve the thermal portion of the benchmark problem. The results from the thermal analysis were then used as input to the second and third phases of the exercise, which consisted of solving the structural portion of the benchmark problem. In the second phase of the exercise, a linear elastic rock mass model was used. In the third phase of the exercise, two different nonlinear jointed rock mass models were used to solve the thermostructural problem. Both models, the Sandia compliant joint model and the RE/SPEC joint empirical model, explicitly incorporate the effect of the joints on the response of the continuum. Three different structural codes, JAC, SANCHO, and SPECTROM-31, were used with the above models in the third phase of the study. Each model was implemented in two different codes so that direct comparisons of results from each model could be made. The results submitted by the participants showed that the finite element solutions using each model were in reasonable agreement. Some consistent differences between the solutions using the two different models were noted but are not considered important to verification of the codes. 9 refs., 18 figs., 8 tabs.
Licensing of the potential nuclear-waste repository at Yucca Mountain by the Nuclear Regulatory Commission would require, among other things, demonstrations of the long term usability of the underground facilities. Such a demonstration involves analysis of the mechanical response of the rock to the presence of underground openings and heat-producing waste, which in turn requires data on the mechanical properties of the rock. This document describes the experimental results from a scoping study which led to the development of procedures for performing quality-affecting rock-mechanics experiments on intact rock. The future experiments performed with these procedures will produce information on the time-dependent deformation of welded tuff and represent one aspect of the overall effort to characterize the rheology of the rock mass. 3 refs., 42 figs., 6 tabs.
This report describes a joint shear model used in conjunction with a computational model for jointed media with orthogonal joint sets. The joint shear model allows nonlinear behavior for both joint sets. Because nonlinear behavior is allowed for both joint sets, a great many cases must be considered to fully describe the joint shear behavior of the jointed medium. An extensive set of equations is required to describe the joint shear stress and slip displacements that can occur for all the various cases. This report examines possible methods for simplifying this set of equations so that the model can be implemented efficiently form a computational standpoint. The shear model must be examined carefully to obtain a computationally efficient implementation that does not lead to numerical problems. The application to fractures in rock is discussed. 5 refs., 4 figs.
Sandia National Laboratories has completed a requirements study for a networked mass storage system. The areas of user functionality, network connectivity, and performance were analyzed to determine specifications for a Network Storage Service to operate in supercomputer environment. 4 refs.
The Network File System (NFS) is used in UNIX-based networks to provide transparent file sharing between heterogeneous systems. Although NFS is well-known for being weak in security, it is widely used and has become a de facto standard. This paper examines the user authentication shortcomings of NFS and the approach Sandia National Laboratories has taken to strengthen it with Kerberos. The implementation on a Cray Y-MP8/864 running UNICOS is described and resource/performance issues are discussed. 4 refs., 4 figs.
Ground water flow in unsaturated, fractured rock is often assumed to be dominated by the porous matrix component. This is frequently based on the argument that water flowing in the fractures is rapidly imbibed into the rock matrix by capillary suction forces with negligible resistance to uptake at the matrix-fracture interface. However, the existence of a low-permeability mineralized layer or coating at this interface may substantially reduce matrix imbibition and consequently result in fracture-dominated flow. To test this concept, four tuff samples containing natural fractures were obtained from tuff formations in southern Nevada. By performing imbibition experiments into the matrix rock, across a mineralized fracture face and then across a fresh uncoated fracture face, water uptake as a function of time and coating was measured. A relatively simple model has been developed to describe the imbibition behavior. 6 refs.
An important aspect of environmentally-conscious operations is adoption of an aggressive waste minimization program. This paper describes the waste minimization and pollution prevention program at Sandia National Laboratories. Although Sandia's approach is patterned after the generic waste minimization models proposed by the Environmental Protection Agency and the Department of Energy, the specifics of implementation, and the potential for payoff, are influenced by the R&D nature of Sandia's work. Key aspects of the program are discussed, including why Sandia is developing and conducting the program; objectives; elements of the program; our approach to implementation; the magnitude of the undertaking; and the expected payoff.
Proceedings of SPIE - The International Society for Optical Engineering
Frear, Darrel R.
The distribution of copper in aluminum thin films is examined with respect to how the copper can influence electromigration behavior. Al-Cu thin films annealed in the single-phase region, to just below the solvus temperature, have θ-phase Al2Cu precipitates at the aluminum grain boundaries. The grain boundaries between precipitates are depleted in copper. Al-Cu thin films heat treated at lower temperatures, within the two-phase region, also have θ-phase precipitates at the grain boundaries but the aluminum grain boundaries continuously become enriched in copper, perhaps due to the formation of a thin coating of θ-phase at the grain boundary. Here, it is proposed that electromigration behavior of aluminum is improved by adding copper because the θ-phase precipitates may hinder aluminum diffusion along the grain boundaries. It was also found that resistivity of Al-Cu thin films decrease during accelerated electromigration testing prior to failure. Pure Al films did not exhibit this behavior. The decrease in resistivity is attributed to there distribution of copper from the aluminum grain matrix to the θ-phase precipitates growing at the grain boundaries thereby reducing the number of defects in the microstructure.
We have designed and manufactured a test chip devoted to the study of interconnect voiding. The test chip is suitable for evaluating theoretical models, acceleration recipes, and the effects of process variations. We describe the chip and a simple, stress-free packaging technique that eliminates any stress to the chip from die bonding or packaging thermal cycles. With this test chip, we can perform many necessary and desirable experiments: determining stress, observing or stimulating void growth, profiling hydrogen concentrations, and measuring excess current noise. We report here preliminary measurements of residual stress, observations of voids, and determinations of hydrogen concentrations of hydrogen concentration under variations in aluminum annealing and passivation. In agreement with observations elsewhere, we find that passivations which differ greatly in intrinsic stress do not differ much in the stress they impart to patterned metal; some workers have suggested instead that excess hydrogen in the aluminum contributes to voiding. Following this lead, we have used nuclear reaction analysis to profile the hydrogen concentration in passivation, metallization, barrier metal, and interlevel dielectric and present some preliminary measurements here. We conclude that passivated metallization may contain as much as 0.1 atomic % hydrogen.
The current status of lifetime prediction under conditions of thermomechanical creep/fatigue is reviewed. Each method is summarized and the results of the application to solder joints is shown. While each method has been applied with some success, a predictive, phenomenological approach has not been developed and validated. A method which captures the response of a crack to steady-state and cycling environments appears to hold most the most promise to provide a useful design tool.
We present a simple and effective path planning algorithm, an essential component in facilitating robot programming, based on a series of plausible task restriction. It is designed to solve realistic'' problems very quickly, at the expense of not being able to solve every problem. First, the notion of realistic'' problems is motivated with heuristic arguments and formalized through task restrictions. Next, an algorithm solving the resulting tasks of interest is provided. We prove its corrections and theoretical efficiency, and demonstrate empirically its effectiveness and speed. We expect our algorithm to be of practical significance based on its simplicity and predicted performance. 9 refs., 7 figs.
To address the need of a practical motion planner for manipulators, we present an efficient and resolution-complete algorithm that has performance commensurate with task difficulty. The algorithm uses SANDROS, a new search strategy that combines hierarchical, nonuniform-multi-resolution, and best-fit search to find a near-optimal solution in the configuration space. This algorithm can be applied to any manipulator, and has been tested with 5 and 6-degree-of-freedom robots, with execution time ranging from 20 seconds to 10 minutes on a 16 MIPS workstation. 14 refs., 3 figs., 1 tab.
Activation procedures can have a dramatic effect on the activity of iron-based catalysts for Fischer-Tropsch (F-T) synthesis. CO conversion over a 100 Fe/3 Cu/0.2 K catalyst (parts by weight) can vary by nearly a factor of 3, depending on activation treatment. In contrast, a 100 Fe/5 Cu/4.2 K/25 SiO2 catalyst displays little dependence of F-T activity on activation treatment. An ultra-high vacuum surface analysis chamber coupled to an atmospheric reactor has been used to measure the surface composition of these catalysts following activation in carbon monoxide at 280°C, while transmission electron microscopy (TEM) and BET surface area measurements have been used to investigate catalyst morphology. CO activation of the 100 Fe/5 Cu/4.2 K/25 SiO2 catalyst at 280°C results in partial reduction of iron to a mixture of FexO and Fe3O4, and an overall surface composition very similar to that obtained following hydrogen activation at 220 or 280°C, consistent with the invariance of F-T activity with activation treatment for this catalyst. Activation of the 100 Fe/3 Cu/0.2 K catalyst in CO at 280°C results in the formation of iron carbide particles, growth of graphitic carbon (Cg) filaments, and formation of a thick, porous, Cg layer covering the carbide particles. Differences in F-T activity between the hydrogen- and CO-activated 100 Fe/3 Cu/O.2 K catalyst are discussed in terms of surface composition and catalyst morphology. The difference in sensitivity of the two catalysts to activation conditions is related to differences in the extent of reduction of the catalysts.
HISPLT is a graphics postprocessor designed to plot time histories for wave propagation codes. HISPLT is available for CRAY UNICOS, CRAY CTSS, VAX VMS computer systems, and a variety of UNIX workstations. The original HISPLT code employs a database structure that allows the program to be used without modification to process data generated by many wave propagation codes. HISPLT has recently been modified to process time histories for the reactor safety analysis code, MELCOR. This report provides a complete set of input instructions for HISPLT and provides examples of the types of plotted output that can be generated using HISPLT. 6 refs., 8 figs., 5 tabs.
The purpose of this NUREG is to present technical information that should be useful to NRC licensees in designing closed-circuit television systems for video alarm assessment. There is a section on each of the major components in a video system: camera, lens, lighting, transmission, synchronization, switcher, monitor, and recorder. Each section includes information on component selection, procurement, installation, test, and maintenance. Considerations for system integration of the components are contained in each section. System emphasis is focused on perimeter intrusion detection and assessment systems. A glossary of video terms is included. 13 figs., 9 tabs.
Blade fatigue life is an important element in determining the economic viability of the Vertical-Axis Wind Turbine (VAWT). A principal source of blade fatigue is thought to be the stochastic (i.e., random) aerodynamic loads created by atmospheric turbulence. This report describes the theoretical background of the VAWT Stochastic Aerodynamic Loads (VAWT-SAL) computer code, whose purpose is to numerically simulate these random loads, given the rotor geometry, operating conditions, and assumed turbulence properties. A Double-Multiple-Stream Tube (DMST) analysis is employed to model the rotor's aerodynamic response. The analysis includes the effects of Reynolds number variations, different airfoil sections and chord lengths along the blade span, and an empirical model for dynamic stall effects. The mean ambient wind is assumed to have a shear profile which is described by either a power law or a logarithmic variation with height above ground. Superimposed on this is a full 3-D field of turbulence: i.e., in addition to random fluctuations in time, the turbulence is allowed to vary randomly in planes perpendicular to the mean wind. The influence of flow retardation on the convection of turbulence through the turbine is also modeled. Calculations are presented for the VAWT 34-m Test Bed currently in operation at Bushland, Texas. Predicted time histories of the loads, as well as their Fourier spectra, are presented and discussed. Particular emphasis is placed on the differences between so-called steady-state'' (mean wind only) predictions, and those produced with turbulence present. Somewhat surprisingly, turbulence is found to be capable of either increasing or decreasing the average output power, depending on the turbine's tip-speed ratio. A heuristic explanation for such behavior is postulated, and a simple formula is derived for predicting the magnitude of this effect without the need for a full stochastic simulation. 41 refs., 32 figs., 1 tab.
Division 2525 Battery Test Laboratory is a fully automated battery testing facility used in evaluating various battery technologies. The results of these tests are used to verify developers' claims, characterize prototypes, and assist in identifying the strengths and weaknesses of each technology. The Test Facility consists of a central computer and nine remote computer controlled battery test systems. Data acquired during the battery testing process is sent to the central computer system. The test data is then stored in a large database for future analysis. The central computer system is also used in configuring battery tests. These test configurations are then sent to their appropriate remote battery test sites. The Battery Test Facility can perform a variety of battery tests, which include the following: Life Cycle Testing; Parametric Testing at various temperature levels, cutoff parameters, charge rates, and discharge rates; Constant Power Testing at various power levels; Peak Power Testing at various State-of-Charge levels; Simplified Federal Urban Driving Schedule Tests (SFUDS79). The Battery Test Facility is capable of charging a battery either by constant current, constant voltage, step current levels, or any combination of them. Discharge cycles can be by constant current, constant resistance, constant power, step current levels, or also any combination of them. The Battery Test Facility has been configured to provide the flexibility to evaluate a large variety of battery technologies. These technologies include Lead-Acid, Sodium/Sulfur, Zinc/Bromine, Nickel/Hydrogen, Aluminum/Air, and Nickel/Cadmium batteries.
PRONTO 3D is a three-dimensional transient solid dynamics code for analyzing large deformations of highly nonlinear materials subjected to high strain rates. It is a Lagrangian finite element program with explicit integration of the equations of motion through time. This report documents the implementation of a four-scale quadrilateral shell element into Version 6.0 of PRONTO 3D. This report describes the theory, implementation and use of a four-node shell element. Also described are the required architectural changes made to PRONTO 3D to allow multiple element types. Several test problems are documented for verification of the PRONTO 3D implementation and for demonstration of computational savings using shell elements for thin structures. These problems also serve as examples for the user. A complete, updated list of the PRONTO 3D input commands is also included.
This purpose of this NUREG is to present technical information that should be useful to NRC licensees for understanding and applying line supervision techniques to security communication links. A review of security communication links is followed by detailed discussions of link physical protection and DC/AC static supervision and dynamic supervision techniques. Material is also presented on security for atmospheric transmission and video line supervision. A glossary of security communication line supervision terms is appended. 16 figs.
This report describes the ranges of the residual contamination that may build up in spent-fuel transport casks. These contamination ranges are calculated based on data taken from published reports and from previously unpublished data supplied by cask transporters. The data involve dose rate measurements, interior smear surveys, and analyses of water flushed out of cask cavities during decontamination operations. A methodology has been developed to estimate the effect of residual contamination on spent-fuel cask containment requirements. Factors in estimating the maximum permissible leak rates include the form of the residual contamination; possible release modes; internal gas-borne depletion; and the temperature, pressure, and vibration characteristics of the cask during transport under normal and accident conditions. 12 refs., 9 figs., 4 tabs.
Chromate conversion coatings such as Parker Company`s Alodine coatings are widely used to increase the corrosion resistance of aluminum and aluminum alloys. The primary disadvantage of chromate-based processes is that they use and produce as waste hexavalent chromium (Cr{sup 6+}). We have discovered that the corrosion resistance of Al can be increased by forming an inorganic barrier coating using chemicals that pose a relatively small environmental hazard. These new coatings are formed using a process that is procedurally identical to the basic chromate conversion process. We have prepared new and conventional coatings on 1100 (99.0 Al minimum), 2024-T3 (Al-Cu-Mg) and 7075-T6 (Al-Zn-Mg) commercial sheet stock for accelerated electrochemical testing and coating conductivity testing. Results show that the new coatings offer increased corrosion resistance compared to uncoated Al, but do not yet match the performance of the chromate conversion coatings. The conductivity of these new films on 1100 Al is comparable to that of Alodine coatings; however, the new coatings are more resistive than Alodine coatings on 2024-T3 and 7075-T6.
A novel technique to monitor thin film deposition has been developed using optical fibers. The system measures the optical thickness of a film and not the physical thickness which results in accurate film deposition for optical applications regardless of deposition conditions. A discussion of the mathematics necessary to understand the operation of the system is presented. The details of the circuitry and software are presented. The performance of the system is then demonstrated for the deposition of SnO{sub 2} on an optical fiber. An analysis of the inherent errors present in the monitor electronics and measurement system and their effects on the accuracy of the deposition is presented. The system is then applied to several practical situations. First, the system is used to monitor the deposition of SnO{sub 2} films on microscope slides. The films on the slides are then shown to have optical thicknesses which are within 1% of the expected values. The system is next used to deposit SiO anti-reflective coatings on Si. The system is then used to monitor the aging effects seen in SiO and SnO{sub 2}. Finally, a seven layer dielectric mirror made from SnO{sub 2} and MgF{sub 2} films is deposited using the monitor. 25 figs., 1 tabs.
The Heat Source/Radioisotopic Thermoelectric Generator shipping counter is a Type B packaging currently under development by Los Alamos National Laboratory. Type B packaging for transporting radioactive material is required to maintain containment and shielding after being exposed to normal and hypothetical accident environments defined in Title 10 of the Code of Federal Regulations Part 71. A combination of testing and analysis is used to verify the adequacy of this packaging design. This report documents the testing portion of the design verification. Six tests were conducted on a prototype package: a water spray test, a 4-foot normal conditions drop test, a 30-foot drop test, a 40-inch puncture test, a 30-minute thermal test, and an 8-hour immersion test.
The MELCOR code has been used to simulate LACE aerosol experiment LA4. In this test, the behavior of single- and double-component, hygroscopic and nonhygroscopic, aerosols in a condensing environment was monitored. Results are compared to experimental data, and to CONTAIN calculations. Sensitivity studies have been done on time step effects and machine dependencies; thermal/hydraulic parameters such as condensation on heat structures and on pool surface, and radiation heat transfer; and aerosol parameters such as number of MAEROS components and sections assumed, the degree to which plated aerosols are washed off heat structures by condensate film draining, and the effect of non-default values for shape factors and diameter limits. 9 refs., 50 figs., 13 tabs.
Early attempts at estimation of stress wave damage due to blasting by use of finite element calculations met with limited success due to numerical instabilities that prevented calculations from being carried past the fragmentation limit. More recently, the improved damage model PRONTO has allowed finite element calculations which remain stable and yield good agreement between calculated fragmented regions and excavated crater profiles for blasting experiments in granite. Application of this damage model to blast experiments at the Straight Creek Mine in Bell County, Kentucky were complicated by anisotropic conditions and uncertainties in material properties. It appears that significant modifications to the damage model and extensive material testing may be necessary in order to estimate damage in these anisotropic materials. 18 refs., 18 figs.
This paper presents a series of experiments in robotic sensori-motor control during grasping. The work utilizes a multifingered, dextrous robot hand equipped with a fingertip force sensor to explore dynamic grasp force adjustment during manipulation. The work is primarily concerned with the relationship between the weight of an object and the grasp force required to lift it. Too weak a grasp is unstable and the object will slip from the hand. Too strong a grasp may damage the object and/or the manipulator. An algorithm is presented which uses tactile information from the sensor to dynamically adjust the grasp force during lift. It is assumed that there is no a priori knowledge about the object to be manipulated. The effects of different arm/hand postures and object surfaces is explored. Finally, the use of sensory data to detect unexpected object motion and to signal transitions between manipulation phases -- with the coincident triggering of new motor programs -- is investigated. 15 refs., 12 figs.
The fabrication of electronic systems has relied upon eutectic tin-lead solder for the attachment of components to printed wiring boards. Higher service temperatures are approaching the durability limits of the eutectic solder. The tin-rich, lead-free solders are being actively studied as alternate alloys. Experiments that examined the wettability of 95Sn-5Sb (wt. %), 95.5Sn-4.0Cu0.5Ag, 96.5Sn-3.5Ag, and the control solder, 60Sn-40Pb, on oxygen-free, high conductivity copper were performed. A rosin based, mildly activated (RMA) flux and three water soluble, organic acid fluxes were used in the wetting balance/meniscometer measurements. The 95.5Sn-4.0Cu-0.5Ag and 95Sn-5Sb alloys exhibited good wetting, with contact angles of 35° < θc < 55° as compared to the excellent performance of the 60Sn-40Pb material (20°< θc <35°). The fair wettability observed with the 96.5Sn 3.5Ag solder (60° < θc <75°) was due in large part to the inability of the fluxes to significantly lower the solder-flux interfacial tension. The wetting rates of the 95.5Sn-4.0Cu-0.5Ag and 95Sn 5Sb solders were comparable to those of the control; the 96.5Sn 3.5Ag alloy wetting rate was slower than the other candidates. The solder film formed on the substrate surface by the 95.5Sn-4.0Cu0.5Ag alloy was very grainy. The water soluble fluxes exhibited a larger degree of residue formation than did the RMA flux.
22nd Fluid Dynamics, Plasma Dynamics and Lasers Conference
Barnette, Daniel
A parabolized Navier-Stokes analysis of a turbulent, compressible, wake/boundary-layer flow field for a cable in tow is discussed. It is assumed that the cable is being towed by a missile-like configuration whose total drag coefficient is known. The cable is assumed to be perfectly aligned with the missile axis and is subjected to its wake. Modeled in the analysis is the far wake behind the missile, coupled with the turbulent boundary layer growth along the cable. An analytical starting solution for a parabolized Navier-Stokes code is presented. The starting solution is applicable downstream of the towing body's near wake and, therefore, circumvents the complex task of computing the towing body's flow field. An algebraic wake/boundary-layer turbulence model is used to simulate turbulent flow in both the decaying wake and growing boundary layer along the cable. Results are presented for a towing-body freestream Mach number of 5 and a Reynolds number of 36.0 x 106 per ft at select distances along a thin cable.
11th Aerodynamic Decelerator Systems Technology Conference
Fullerton, T.L.
Parachute system performance issues such as turnover and wake recontact may be influenced by velocities induced by the wake of the delivering aircraft. The magnitude and direction of these aircraft-induced velocities is dependent on the specific delivering aircraft (as characterized by its size, shape, and weight), the aircraft’s speed and flight path (including any maneuvers which it is performing), and the location on the aircraft from which the system is released. In addition, the parachute deployment sequence is of major importance. The most significant effects will tend to occur after parachute deployment since induced velocities from the aircraft may become significant when compared to the velocity of the parachute system. For example, any downwash behind an aircraft will tend to cause a parachute system, which is horizontally deployed, to fly at a more positive angle of attack. As the forward speed of the parachute system decreases after deployment, this induced angle of attack will tend to increase. This effect tends to retard the rate at which the parachute system “turns over” from a horizontal trajectory into a vertical one. On the other hand, a maneuvering aircraft might produce upwash in its wake which would produce an opposite effect. In this case, the turnover rate would be enhanced. Aircraft-induced velocities may also affect the process known as “wake recontact” in which the momentum of the parachute wake causes the wake itself to overtake the parachute. This sometimes causes severe collapse of the canopy such as reported by Spahr and Wolf. Wake recontact may be either hastened or delayed, depending upon the aircraft flight path and the parachute deployment sequence
This paper reviews some of the technical considerations and current practices for testing parachutes in conventional wind tunnels. Special challenges to the experimentalist caused by the fabric construction, flexible geometry, and bluff shape of parachutes are discussed. In particular, the topics of measurement technique, similarity considerations, and wall interference are addressed in a summary manner. Many references are cited which provide detailed coverage of the state of the art in testing methods.
Sandia National Laboratories has performed a series of experiments under the sponsorship of the US Nuclear Regulatory Commission (USNRC) to assess the fire performance of thermally aged electrical cables. Two measures of fire performance were evaluated, namely, (1) the vulnerability of cables to thermal damage and (2) the flammability of cables. In each case, direct comparisons were made between experiments involving unaged (i.e., new off the reel) cables and cables subjected to accelerated thermal aging. The results were evaluated from the perspective of fire risk. It was found that thermal aging did cause changes in the thermal damageability of the cables tested; however, the changes observed are not considered risk significant. Large-scale fire tests demonstrated a clear decrease in material flammability due to thermal aging. Thus, it was concluded that the use of cable thermal damage and flammability information based on the testing of unaged cable samples is an acceptable risk assessment practice. Indeed, in the case of flammability, this is a conservative practice.
Computer networks, supporting an organization's activities, are prevalent and very important to the organization's mission. Implementing a heterogenous organizational network allows the staff to select the computing environment that best supports their job requirements. This paper outlines the lessons learned implementing a heterogenous computer network based on networking standards such as TCP/IP and Ethernet. Such a network is a viable alternative to a proprietary, vendor supported network and can provide all the functionality customers expect in a computer network. 2 figs.
Two experiments, DCH-3 and DCH-4, were performed at the Surtsey test facility to investigate phenomena associated with a high-pressure melt ejection (HPME) reactor accident sequence resulting in direct containment heating (DCH). These experiments were performed using the same experimental apparatus with identical initial conditions, except that the Surtsey test vessel contained air in DCH-3 and argon in DCH-4. Inerting the vessel with argon eliminated chemical reactions between metallic debris and oxygen. Thus, a comparison of the pressure response in DCH-3 and DCH-4 gave an indication of the DCH contribution due to metal/oxygen reactions. 44 refs., 110 figs., 43 tabs.
This Manual is compiled from techniques used in the Industrial Hygiene Chemistry Laboratory of Sandia National Laboratories in Albuquerque, New Mexico. The procedures are similar to those used in other laboratories devoted to industrial hygiene practices. Some of the methods are standard; some, modified to suit our needs; and still others, developed at Sandia. The authors have attempted to present all methods in a simple and concise manner but in sufficient detail to make them readily usable. It is not to be inferred that these methods are universal for any type of sample, but they have been found very reliable for the types of samples mentioned.
The title of this paper might unfairly provoke readers if it conjures up visions of vast stores of high-tech gadgets in several hundred technology warehouses'' (also known as federal laboratories) around the country, open for browsing by those in search of a bargain. That vision, unfortunately, is a mirage. The term technology transfer'' is not really as accurate as is the term technology team-work,'' a process of sharing ideas and knowledge rather than widgets. In addition, instead of discussing the efforts of more than 700 federal labs in the US, I mean to address only those nine government-owned, contractor-operated multiprogram labs run by the Department of Energy. Nevertheless, the topic of technology team-work opportunities with DOE multiprogram national lab is of significance to those concerned with increasing economic competitiveness and finding technological solutions to a host of national problems. A significant fraction of US R D capabilities rests in the nine DOE multiprogram national laboratories -- and these labs have only just begun to join the other federal laboratories in these efforts due to the passage and recent implementation of the National Competitiveness Technology Transfer Act of 1989.
The case and junction temperatures of selected integrated circuits (ICs) on the processor module of the SANDAC V computer were calculated using BETAsoft-R,'' a personal computer, thermal analysis software program. The predicted data was then compared to corresponding IC case temperature measurements from laboratory tests of a functional SANDAC V computer. Although the difference between the actual and calculated values was somewhat higher than expected, the results of the analysis indicate that BETAsoft-R'' identified the critical ICs on the processor module and that it is capable of analyzing printed circuit boards for potential thermal problems before the design layout is finalized. 8 figs., 12 tabs.
Sandia National Laboratories, Albuquerque, may soon have more responsibility for the operation of its own telephone system. The processes that constitute providing telephone service can all be improved through the use of a central data information system. We studied these processes, determined the requirements for a database system, then designed the first stages of a system that meets our needs for work order handling, trouble reporting, and ISDN hardware assignments. The design was based on an extensive set of applications that have been used for five years to manage the Sandia secure data network. The system utilizes an Ingres database management system and is programmed using the Application-By-Forms tools.
Radio-frequency (rf) electrical sources are commonly used to generate plasmas for processing of industrial materials and for related experimental work. Published descriptions of such plasmas usually include generator-power measurements, and occasionally include plasma dc-bias measurements. One or both of these quantitites are also used in industrial feedback ccontrol systems for setpoint regulation. Recent work at Sandia an elsewhere with an experimental rf discharge device (the GEC RF Reference Cell'') has shown that power and dc-bias levels are often insufficient information for specifying the state of the plasma. The plasma can have nonlinear electrical characteristics that cause harmonic generation, and the harmonic levels can depend sensitively on the impedance of the external circuitry at harmonic frequencies. Even though the harmonics may be low in amplitude, they can be directly related to large changes in plasma power and to changes in optical emission from the plasma. Consequently, in order for a worker to truly master the plasma-generation process, it is necessary to understand, measure, and control electrical characteristics of the plamsa. In this paper we describe technique that have been developed from work with the Reference Cell for making electrical measurements on rf plasmas, and we describe surprising observations of harmonic behavior. 10 refs., 4 figs.
The catalytic hydropyrolysis tests performed on coals of varying rank clearly show that high conversions and tar yields can be achieved in a fixed-bed laboratory reactor system. Each of the three types of catalysts utilized, MoS{sub 2} derived from dioxydithiomolybdate, the metal HTO catalysts, and the Pd colloidal catalysts, were shown to be effective for the bituminous coals tested. For the lower rank coals, no significant increase in conversions or tar yields preliminary tests utilizing oil agglomeration as a pretreatment provided encouraging results, with conversions and tar yields achieved similar to using the metal HTO and colloid catalysts. This pretreatment process might be effective for use in catalyst dispersal and coal cleaning, and facilitating coal introduction into a high-pressure reactor. In summary, the data obtained show that catalytic hydropyrolysis on a laboratory scale can achieve the necessary conversions and tar yields to be considered as a potentially viable process for converting coal into liquid products. Through proper dispersal of selected catalysts onto bituminous coals, conversions greater than 80% and tar yields greater than 70% can be achieved at low active metal concentrations. 12 refs., 9 figs., 7 tabs.
The objective of this review is to evaluate the South Texas Project (STP) Probabilistic Safety Analysis (PSA) for the USNRC. The PSA was reviewed for thoroughness of analysis, accuracy in plant modeling, legitimacy of assumptions, and overall quality of the work. The review is limited to the internal event analysis and the fire sequence analysis. This review is not a quantitative evaluation of the adequacy of the PSA. The adequacy of the PSA depends on the intended uses and must be addressed on a case-by-case basis by the licensee and the NRC. This review identifies strengths, weakness, and areas where additional clarification would assist the NRC in evaluating the PSA for specific regulatory purposes. The licensee, Houston Lighting and Power (HL P), reviewed a draft version of this report prior to its final release to the USNRC. The responses provided by HL P are provided in detail in appendices to this report, and they are summarized in the main body of the report. All issues raised during the review were adequately addressed by HL P in the responses. 27 refs., 4 tabs.
Pressure-pulse tests have been performed in bedded evaporites of the Salado Formation at the Waste Isolation Pilot Plant (WIPP) site to evaluate the hydraulic properties controlling brine flow through the Salado. Hydraulic conductivities ranging from about 10{sup {minus}14} to 10{sup {minus}11} m/s (permeabilities of about 10{sup {minus}21} to 10{sup {minus}18} m{sup 2}) have been interpreted from nine tests conducted on five stratigraphic intervals within eleven meters of the WIPP underground excavations. Tests of a pure halite layer showed no measurable permeability. Pore pressures in the stratigraphic intervals range from about 0.5 to 9.3 MPa. An anhydrite interbed (Marker Bed 139) appears to be one or more orders of magnitude more permeable than the surrounding halite. Hydraulic conductivities appear to increase, and pore pressures decrease, with increasing proximity to the excavations. These effects are particularly evident within two to three meters of the excavations. Two tests indicated the presence of apparent zero-flow boundaries about two to three meters from the boreholes. The other tests revealed no apparent boundaries within the radii of influence of the tests, which were calculated to range from about four to thirty-five meters from the test holes. The data are insufficient to determine if brine flow through evaporites results from Darcy-like flow driven by pressure gradients within naturally interconnected porosity or from shear deformation around excavations connecting previously isolated pores, thereby providing pathways for fluids at or near lithostatic pressure to be driven towards the low-pressure excavations. Future testing will be performed at greater distances from the excavations to evaluate hydraulic properties and processes beyond the range of excavation effects.
Proceedings of SPIE - The International Society for Optical Engineering
Vawter, G.A.; Hietala, Vincent M.; Kravitz, Stanley H.; Meyer, W.J.
An all optical circuit in GaAs/AlGaAs for control of phased-array systems using a single photonic integrated circuit chip has the potential for high performance control of phasedarray systems from a small, lightweight, package. Such a circuit based exclusively on combinations of reverse-biased optical phase modulators, waveguide interconnects, corner reflectors, and power splitter combiners with optical-fiber output to the antenna elements has been designed at Sandia National Laboratories. This paper presents some basic features of optical phase modulators for photonic circuit applications and provide relevant performance data as achieved to date. Current structures have been shown to operate with a 76.5°/V-mm figure of merit at 1.06μm and losses as low as 2 cm-1. A novel digital phase shifter to allow direct digital control of phased arrays is also proposed and demonstrated.
A novel optical based RF beam steering system is proposed for phased-array antenna systems. The system, COMPASS (Coherent Optical Monolithic Phased Array Steering System), is based on optical heterodyning employed to produce microwave phase shifting. At the heart of the system is a monolithic Photonic Integrated Circuit (PIC) constructed entirely of passive components. Microwave power and control signal distribution to the antenna is accomplished by optical fiber, thus separating the PIC and its control functions from the antenna. This approach promises to reduce size, weight, and complexity of future phased-array antenna systems.
This update discusses modifications of PRONTO 3D tailored to the design of fast burst nuclear reactors. A thermoelastic constitutive model and spatially variant thermal history load were added for this special application. Included are descriptions of the thermoelastic constitutive model and the thermal loading algorithm, two example problems used to benchmark the new capability, a user's guide, and PRONTO 3D input files for the example problems. The results from PRONTO 3D thermoelastic finite element analysis are benchmarked against measured data and finite difference calculations. PRONTO 3D is a three-dimensional transient solid dynamics code for analyzing large deformations of highly non-linear materials subjected to high strain rates. The code modifications are implemented in PRONTO 3D Version 5.3.3. 12 refs., 30 figs., 9 tabs.
A study was conducted to determine the feasibility of coating gold plated kovar lids with colloidally bonded aluminum oxide. Radiation that is incident on a gold plated lid generates a large number of photoelectrons. These electrons can enhance the damage to microelectronic devices and circuits (ICs). The primary purpose of the coating is to stop the electrons emitted from the lid that would otherwise increase the damage to the IC. A coating system consisting of {approximately}95 wt % alumina (0.5 {mu}m particles) and {approximately}5 wt % colloidal silica (10 nm particles) was developed. The coating was applied to the lids as an aqueous suspension which was then dried to form a porous coating. Coating processing conditions were optimized so that crack-free, uniform coatings with the required thickness ({approximately}80 {mu}m) could be consistently produced. Preliminary data have indicated that the coated lid can be attached to the IC package using current belt furnace sealing procedures. The adhesion and mechanical integrity of the coatings were evaluated by submitting coated lids to centrifuge and shock testing. Selected coatings successfully withstood the shock test and 85% were undamaged after being subjected to an acceleration of 30,000 g's. Several types of radiation tests were performed to determine the effectiveness of the coating to stop electron penetration. Evaluation testing included gamma dose enhancement and X- ray induced photocurrent enhancement. The results for lids with coatings 80 or 150 {mu}m thick were compared with results for uncoated kovar and ceramic lids. 6 refs., 6 figs.
This report documents the as-built operational performance of Sandia's Severe Electrostatic Discharge Tester Version-3 (SSET-3) SN:2 and lists the hardware and additional documentation delivered to Division 2174 on July 31, 1991. (The supplied items are listed.) The primary emphasis of this report is to provide a qualitative and quantitative evaluation of the SSET against requirements derived from the Severe Human Body ESD model (SHBESD) (1), which is defined in terms of an equivalent circuit (Figure 1.1) and a short-circuit current waveform (Figure 1.2). This report also presents supporting information on the calibration and verification of ancillary equipment used to assess the operation of the SSET. While the documentation of the verification and calibration of ancillary equipment is somewhat lengthy, it is considered necessary because the SSET may be used in situations where its output characteristics will be critically scrutinized. Thus, the supporting documentation is necessary to lend credibility to the performance/verification measurements made on the SSET. 5 refs., 36 figs.
This document serves as the proceedings for the manual project review meeting held by Sandia's Photovoltaic Technology Research Division. It contains information supplied by each organization making a presentation at the meeting, which was held July 30 through 31, 1991 at the Sheraton Hotel in Albuquerque, New Mexico. Sessions were held to discuss national photovoltaic programs, one-sun crystalline silicon cell research, concentrator silicon cell research, and concentrating collector development.
One decade ago, Sandia National Laboratories designed and developed a nonpyrotechnic smoke generator capable of producing large quantities of low corrosivity, low toxicity chemical smoke to be used as a visual obscurant in access delay applications. Utilizing the same chemistry, a proof-of-concept advanced smoke generator is presently being tested. The testing is being conducted to evaluate two new concepts providing unique capabilities. Hemispherical stainless steel bladders are installed in spherically shaped chemical storage reservoirs. This provides positive displacement of the chemicals and permits orientation insensitive operation. Also, a specially designed nozzle/valve is being evaluated as a means of providing a multiple initiation capability. Cyclic operation could be accomplished via time delay circuitry, sensor input, or on demand from the control console. These new capabilities provide distinct advantages. Some advantages may be longer obscuration times, optimal volume obscuration, easier facility sizing, no organic seals in contact with the stored chemicals, and elimination of the requirement to use ultrahigh purity nitrogen as a propellant.
NMR and NQR reveal substantial structural changes in the metallic phase of La2CuO4+δ which occur below 220 K. The oxygen octahedra in the metallic phase are not tilted at phase separation; upon cooling to 40 K considerable tilt has developed. The low temperature structure is highly disordered.
Previously, we have designed 3-level filters (suitable for implementation on magneto-optic spatial light modulators) to maximize the output signal-to-noise ratio (SNR) and to separately maximize Peak-to-Correlation Energy (PCE) that measures the correlation peak sharpness. In practice, we want the correlation peaks to be sharp (i.e., large PCE) as well as noise-tolerant (i.e., large SNR). In this paper, we will present a new method to optimally combine these two desirable properties into a single optimization procedure. Similar methods to trade off SRN versus Peak Efficiency and PCE versus Peak Efficiency will be presented. Both simulation and experimental results will be included.
We have studied triggering of fuel-coolant interactions, the work performed against the surrounding coolant during the interaction, and the generation of hydrogen produced by melt water chemical reactions with laboratory-scale experiments. We used single drops of three core-melt simulants: (a) molten stoichiometric thermite-generated iron-aluminum oxide melts to simulate the core-melt material that might be produced in the severe accident of an oxide fueled reactor; (b) molten aluminum to simulate melt that might be produced in the severe accident of a nonpower reactor; and (c) an intermediate material, aluminum-enriched iron aluminum oxide thermite, that might simulate severe meltdown of an oxide-metal dispersion fuel (cermet). As a result of these experiments, we have concluded that the peak pressure (or impulse) of the transient is not a governing parameter for the triggering of steam explosions of single drops of melt. We have observed maximum pressure-volume work outputs produced by the aluminum-rich and stoichiometric thermite melts of about 70 and 25 J/g of melt; the corresponding values for molten aluminum at 1273 and 1473 K are about 14 and 21 J/g of melt. The extent of metal-water reaction for the stoichiometric and aluminized melts were 13 and 19%. The aluminum melts at 1273 and 1473 K produced approximately 1 and 3% metal-water reaction.
Sandia National Laboratories is very active in developing multi-dimensional, multi-material shock wave physics codes. One example is the state-of-the-art, three-dimensional Eulerian code CTH which is used at numerous government and university sites. CTH is being ported to both Single Instruction Multiple Data (SIMD) and Multiple Instruction Multiple Data (MIMD) massively parallel computers. The next-generation arbitrary-Lagrangian-Eulerian code RHALE is under development. This paper will discuss these codes. CTH is an Eulerian code for modelling multi-dimensional, multi-material, large deformation, strong shock physics. Finite-volume numerical schemes are used with one-dimensional, two-dimensional and three-dimensional meshes. CTH has models for elastic-plastic materials, porous materials, high explosive detonation, fracture, and energy deposition. Several analytic equations of state are available including ideal gasses, Jones-Wilkins-Lee high explosive reaction products, Mie-Griineisen solids, and sophisticated multi-phase models that are valid for a very broad range of densities and temperatures. Tabular equations of state are also available. Second-order accurate advection schemes are used to minimize the dispersion found in Eulerian codes. Very large three-dimensional calculations may be run efficiently on a CRAY supercomputer because the code is highly vectorized and the data bases reside on the Solid State Disk (SSD). Data bases larger than one hundred million words are commonly used. Sophisticated color post-processing software was developed to aid in interpreting the results. Much of CTH has been ported to both SIMD and MIMD massively parallel computers. The two-dimensional version is running three times faster than a single CPU CRAY/YMP on the 16k node SIMD Connection Machine and five times faster on the 1024 node nCUBE2 MIMD computer. Both of the massively parallel computers can be expanded by a factor of four to eight yielding a system an order of magnitude faster than a CRAY. The next-generation, three-dimensional arbitrary-Lagrangian-Eulerian code RHALE is under development. Finite element techniques are used to integrate the physics through time. The mesh will move with the material (Lagrangian mesh) until the distortion becomes excessive and then the nodes are automatically repositioned to smooth the mesh and improve the accuracy (Eulerian mesh). Node motion occurs only where the distortion is excessive. This results in a code with the best features of both Lagrangian and Eulerian codes. Arbitrary-connectivity meshes are used to generate very complicated and sophisticated meshes. However, this dramatically increases the complexity of the Eulerian algorithms.
The hypervelocity impact of a particle on a surface generates a jet of shocked material which is thrown from the impact site. A simple analytic model has been developed to obtain expressions for the evolution of this jet of ejecta. The analysis is based on applying the conservation equations of mass and momentum to the problem of a normal impact of a sphere against a semi-infinite flat target. Expressions are developed for the evolution of the jet velocity, jet release point and the locus of points which describe the ejecta envelope. These analytical ejecta profiles are compared with high speed photographs of impact jet formation.
Many robot control algorithms for high performance in-contact operations including hybrid force/position, stiffness control and impedance control approaches require the command the joint torques. However, most commercially available robots do not provide joint torque command capabilities. The joint command at the user level is typically position or velocity and at the control developer level is voltage, current, or pulse-width, and the torque generated is a nonlinear function of the command and joint position. To enable the application of high performance in-contact control algorithms to commercially available robots, and thereby facilitate technology transfer from the robot control research community to commercial applications, an methodology has been developed to linearize the torque characteristics of electric motor-amplifier combinations. A four degree of freedom Adept 2 robot, having pulse-width modulation amplifiers and both variable reluctance and brushless DC motors, is converted to operate from joint torque commands to demonstrate the methodology. The commercial robot controller is replaced by a VME-based system incorporating special purpose hardware and firmware programmed from experimental data. The performance improvement is experimentally measured and graphically displayed using three-dimensional plots of torque vs command vs position. The average percentage torque deviation over the command and position ranges is reduced from as much as 76% to below 5% for the direct-drive joints 1, 2 and 4 and is cut by one half in the remaining ball-screw driven joint 3. Further, the torque deviation of the direct-drive joints drops below 2.5% if only the upper 90% of the torque range is considered. 23 refs., 20 figs., 2 tabs.
The mechanical behavior of crushed natural rock salt is of concern to the Waste Isolation Pilot Plant (WIPP) Project because excavated salt is a candidate material for use as backfill around the waste packages and in storage rooms, shafts and other underground openings. To complement existing studies on the compaction behavior of dry and damp (i.e., unsaturated) crushed rock salt under hydrostatic compression, we initiated an extensive experimental program to evaluate (1) the effect of brine-saturation on the consolidation rates and terminal densities of crushed salt subjected to hydrostatic compression, and (2) the influence of small deviatoric stresses on the consolidation rate damp crushed rock salt. This investigation is incomplete, and laboratory facilities are limited, therefore, in this report we review available results, in order to make available preliminary estimates of the effects of brine-saturation and shear stress on consolidation. Experiments with brine were carried out under nominally drained conditions. Experiments completed to data include five hydrostatic compaction tests on brine-saturated samples, run at pressures ranging from 1.72 to 10.34 MPa, and two prototype shear consolidation experiments run at a mean stress of 3.45 MPa and a stress difference of 0.69 MPa. Both sets of experiments were run at 20{plus minus}0.5 {degrees}C. Although the experiments on brine-saturated crushed rock salt exhibit several discrepancies, we can draw the following conclusions. (1) Though effects associated with brine-saturated apparently have a retarding effect on consolidation, rates are reduced by less than an order of magnitude when compared with unsaturated specimens. Despite saturation, high fractional densities (>0.95) are attainable even on laboratory time scales using pressures well below lithostatic at the WIPP ({approx} 15 MPa). 23 refs., 26 figs., 5 tabs.
The MERLIN 2 program is designed to transfer data between finite element meshes of arbitrary geometry. The program is structured to accurately interpolate previously computed solutions onto a given mesh and format the resulting data for immediate use in another analysis program. Data from either two-dimensional or three-dimensional meshes may be considered. The theoretical basis and computational algorithms used in the program are described and complete user instructions are presented. Several example problems are included to demonstrate program usage. 13 refs. 15 figs.
This report describes the phenomenological equations and the numerical procedures used by the CONTAIN 1.1 code to determine the conditions within nuclear power plant containment during a severe accident. The CONTAIN detailed models provide the capability to mechanistically calculate the containment internal thermalhydraulic conditions and the amount of radioactive matter that would be released to the environment if there were a leak from the containment. Note that the CONTAIN models can be verified by comparing the code calculations to experimental results. The models described include those to account for the flows of mass and energy between containment compartments, the exchange of energy between the atmosphere and heat structures, the thermodynamic conditions, the distributions of aerosols, the decay and transport of fission products, the deflagration of hydrogen and carbon monoxide, boiling water reactor suppression pool behavior, and engineering safety features, including a spray, fan coolers, and an ice condenser. These models are solved with implicit coupling, where appropriate, to obtain a stable and computationally efficient solution. 52 refs., 36 figs., 9 tabs.
The Primary Standards Laboratory (PSL) operates a system-wide primary standards and calibration program for the US Department of Energy, Albuquerque Operations Office (DOE/AL). The PSL mission is as follows: to develop and maintain primary standards; to calibrate electrical, physical, and radiation reference standards for customer laboratories (DOE/Al integrated contractors); to conduct technical surveys and audits of these laboratories; and to recommend and implement system-wide improvements. This report summarizes activities of the PSL for the second half of 1990 and provides information pertinent to the operation of the DOE/AL Standards and Calibration Program. Specific areas covered include development projects, improvement projects, calibration and special measurements, surveys and audits, and significant events. Activities in these areas have been at a lower than normal level because of response to increased Environment, Safety, and Health (ES H) concerns and preparation for a Tiger Team visit. Appendices include certifications and reports, commercial calibration laboratories, PSL memoranda, and National Institute of Standards and Technology ((NIST)--formerly the National Bureau of Standards (NBS)) test numbers.
Sandia National Laboratories has developed an advanced self-contained tracking control system for use with one- or two-axis tracking solar arrays. The SolarTrak system computes the sun's position based on the time and stored position data, and then controls two motors to point the tracker at the sun without using sun sensors. When used with a photovoltaic concentrator array, the system initially performs a self-alignment routine using array-generated current to locate the sun. The routine computes six numbers that are used during the normal operation to correct the array pointing for the tracker's installation misalignment. This enables the tracker to point accurately even with installation misalignments of up to several degrees. The SolarTrak system consists of a control board, which contains a Motorola 68HC11 microcontroller, a power supply board, motor-interface boards, and a hand-held user interface board, which contains a liquid-crystal display and an input keypad. This report contains a thorough discussion of the controller software and hardware, including control algorithms, parts lists and estimated costs (about $300 per system). The performance measured on two trackers is reviewed. Tracking accuracy was better than {plus minus}0.1{degrees} over a full day on one system. A thorough user's manual is included. Companies interested in licensing the technology should contact the Technology Transfer Division of Sandia National Laboratories. 20 refs., 53 figs., 5 tabs.
Simulated DHLW (Defense High Level Waste) package performance tests were carried out at the WIPP (Waste Isolation Pilot Plant) by emplacing a number of waste canisters containing electrical heaters into the floor of the mine. Peak temperatures were about 130{degrees}C, and the tests ran for three years. During this time, an unanticipated large amount of water was collected from heater hole BO42. A study was, therefore, undertaken to determine if this fluid was derived from normal weep brines. This was accomplished by comparing the amount of salt deposited by the dried weep brines with the volume of condensed steam collected during the test. Documenting the post-test condition of the various backfills was the other objective of this report. In spite of being exposed to acidic vapors, the bentonite-sand backfill retained its mineralogic integrity. However, the bentonite-sand backfill compacted between the canister and the wall only achieved a density that was about three quarters that of a pore-free material. The bentonite backfill also showed evidence of hair-line cracks through which steam had left the vicinity of the canister. In contrast, compacted crushed salt backfill exhibited no evidence of through-going cracks and was compacted to better than 99% of that of pure nonporous sodium chloride. Thus, the seal provided by a crushed salt backfill appears to be superior to that provided by bentonite. 13 refs., 6 tabs.
This report provides system designers with basic human factors information and guidelines for designing and developing the software user interface. A brief discussion of the user interface design philosophy is presented, followed by an overview of the user interface options available (such as color and highlighting), candidate approaches, and discussion of general display concepts and user interface features. We have presented information to facilitate discussions of user interface options, to aid in making final user interface design decisions, and to further the refinement of the user interface. We provide a candidate questionnaire for evaluating your software user interface. 41 refs., 3 tabs.
We have conducted an extensive investigation of the split cavity oscillator (SCO) using particle-in-cell simulation. The goal of this work is to test and optimize an inverse diode rf convertor for use with a cylindrical SCO, while simultaneously determining factors that control rf extraction efficiency. We present results from simulations of several configurations including the SCO with inverse diode extractor, the SCO in conjunction with post-acceleration and inverse diode extraction, and the SCO, using electron beams with a variety of currents, voltages, and radii. 7 refs., 8 figs.
This report presents an assessment of ambient temperature rechargeable lithium batteries for electric vehicle applications. It was prepared for the Department of Energy, Office of Propulsion Systems. The status of development programs in industry and research laboratories was determined for several positive and negative electrode materials and for organic liquid and solid polymer electrolytes. Recommendations are suggested for future research and development activities. 217 refs.
The hydrodynamic blast created by the initiation of a 1 kev X-ray source from an arc-induced ionized gas column, involves density and temperature ratios of such magnitude that the strong shock theory of propagation from continuum fluid mechanics does not apply. Because these simulations occurs in a near vacuum, the continuum equations of motion break down and become invalid during the expansion process as the wavefront density decreases. This report summarizes an approximate treatment of the hydrodynamics of a strong explosion followed by an expanding wavefront in a near vacuum. The analysis was performed in support of the Saturn program to assist the test engineers in the design of a shroud which is optimized to receive the maximum cold X-ray radiation through its aperture while minimizing the hydrodynamic damage to the rest specimens. The analytical treatment uses mass conversion and the assumption of a liner velocity profile to assess the dynamic behavior of the developing wavefront. This technique provides a first estimate of the gas motion and pressure pulse and indicates some general trends of the hydrodynamic phenomenon. 9 refs., 16 figs., 1 tab.
NASA has proposed that the solar concentrator for the manned space station, referred to as the Solar Concentrator Advanced Development (SCAD) dish, undergo terrestrial testing prior to being deployed in space. Because reliable flight concentrator performance is so important, independent tests of the SCAD concentrator are needed to demonstrate the offset parabolic concept and validate the computer codes needed for predicting concentrator flux profile and power generating capability. This report documents the first phase of a three-phase project to test the SCAD concentrator on sun. The three phases of the project are (1) Feasibility of On-Sun Testing; (2) Detailed Design and Fabrication of Test Fixtures; and (3) Testing and Analysis of Results. The objectives of Phase 1 are to evaluate the feasibility of testing the concentrator on sun in a terrestrial environment and to determine the potential for accurately predicting its performance in space. The feasibility study includes: an evaluation of terrestrial structures to support and track the concentrator; an assessment of methods for protecting the concentrator from the environment when it is not on test; the selection of the most feasible support structure and protection system; an evaluation of the effects of terrestrial solar power levels and sunshapes on the verification of computer codes for predicting the on-orbit performance of the concentrator; the development of a preliminary test plan complete with procedures and instrumentation; and the development of schedule and cost estimates for Phases 2 and 3 of the project.
This report describes a computer-controlled densitometer and software designed for qualitative and semiquantitative analyses of photographically recorded atomic emission spectra. The instrument provides a number of operational features and unique capabilities for spectrochemical analyses. The purpose of this research was the evaluation of the automated densitometer system and computer algorithms for identifying and measuring atomic emission spectra from photographs. 11 refs., 10 figs., 5 tabs.
We have obtained Raman spectra of icosahedral boron-rich solids. The spectra of α-rhombohedral boron, boron arsenide, and boron phosphide are consistent with highly-ordered materials. Polarization studies have resulted in symmetry assignments for most of the Raman bands of α-rhombohedral boron. In contrast, the Raman spectra of the boron carbides reveal local substitutional disorder. They also change progressively as a function of carbon content. A structural model for the boron carbides has been developed to explain the Raman and infrared absorption spectra, x-ray data, and electrical and thermal transport properties. Raman spectra of boron carbide samples enriched in 10B, 11B, and 13C reveal details of the atomic motions. The vibrational frequencies and exceptionally narrow linewidths of certain Raman modes are discussed in terms of a ‘‘strong’’ bond model. In this model certain vibrational modes involving relatively stiff bonds between chain atoms, chain and icosahedral atoms, and atoms on different icosahedra are decoupled from the boride lattice by weak, intraicosahedral bonds.
The Small-Scale Mine-By was an in situ experiment to measure changes in brine and gas permeability of rock salt as a result of nearby excavation. A series of small-volume pressurized brine- and gas-filled test intervals were established 8 m beneath the floor of Room L1 in the WIPP underground. The test intervals were isolated in the bottom of the 4.8-cm diameter monitoring boreholes with inflatable rubber packers, and are initially pressurized to about 2 MPa. Both brine- and gas-filled test intervals were located 1.25, 1.5, 2, 3, and 4 r from the center of a planned large-diameter hole, where r is the radius of the large-diameter hole. Prior to the drilling of the large-diameter borehole, the responses of both the brine- and gas-filled test intervals were consistent with the formation modeled as a very low permeability, low porosity porous medium with a significant pore (brine) pressure and no measurable gas permeability. The drilling of the mine-by borehole created a zone of dilated, partially saturated rock out to about 1.5 r. The formation pressure increases from near zero at 1.5 r to the pre-excavation value at 4 r. Injection tests reveal a gradient of brine permeabilities from 5 {times} 10{sup {minus}18} m{sup 2} at 1.25 r to about the pre-excavation value (10{sup {minus}21} m{sup 2}) by 3 r. Gas-injection tests reveal measurable gas permeability is limited to within 1.5 r. 17 refs., 24 figs., 6 tabs.
A fractured porous medium is often modeled as a dual porosity system. The subsystems of fractures and matrix pores are assumed to provide two flow continuums. This is especially true when considering solute transport through such a system. Coupling terms are then required to enable the calculation of the exchange of solute between the two subsystems. The coupling terms for solute transport through a fractured medium are derived in this report. This report then investigates the need for the dual porosity models for solute transport. It is shown that the complexity of a dual porosity model is required in some cases to accurately represent the solute motion. However, it is also shown that some situations can be well represented by approximate single porosity models if certain criteria are met. A single porosity model allows the use of analytical solutions. Sample calculations are presented using parameter values representative of Yucca Mountain tuffs. These calculations show that a dual porosity model is not required to model solute transport at Yucca Mountain if the water fluxes are as low as currently believed. 39 refs., 10 figs., 2 tabs.
Sandia National Laboratories, has developed a methodology for performance assessment of deep geologic disposal of high-level nuclear waste. The applicability of this performance assessment methodology has been demonstrated for disposal in bedded salt and basalt; it has since been modified for assessment of repositories in unsaturated, fractured tuff. Changes to the methodology are primarily in the form of new or modified ground water flow and radionuclide transport codes. A new computer code, DCM3D, has been developed to model three-dimensional ground-water flow in unsaturated, fractured rock using a dual-continuum approach. The NEFTRAN 2 code has been developed to efficiently model radionuclide transport in time-dependent velocity fields, has the ability to use externally calculated pore velocities and saturations, and includes the effect of saturation dependent retardation factors. In order to use these codes together in performance-assessment-type analyses, code-coupler programs were developed to translate DCM3D output into NEFTRAN 2 input. Other portions of the performance assessment methodology were evaluated as part of modifying the methodology for tuff. The scenario methodology developed under the bedded salt program has been applied to tuff. An investigation of the applicability of uncertainty and sensitivity analysis techniques to non-linear models indicate that Monte Carlo simulation remains the most robust technique for these analyses. No changes have been recommended for the dose and health effects models, nor the biosphere transport models. 52 refs., 1 fig.
The governing equation for steady flow in a partially saturated, porous medium can be written in a linear form if one adopts a hydraulic conductivity function that is exponential in the capillary-pressure head. The resulting linear field equation is well suited to numerical solution by the boundary integral equation method (BIEM). The exponential conductivity function is compared to a more complex form often assumed for tuffs, and is found to be a reasonable approximation over limited ranges of pressure head. A computer code based on the BIEM is described and tested. The BIEM is found to exhibit quadratic convergence with element size reduction on smooth solutions and on singular problems, if mesh grading is used. Agreement between results from the BIEM code an a finite-element code that solves the fully nonlinear problem is excellent, and is achieved at a substantial advantage in computer processing time. 26 refs., 23 figs., 8 tabs.
The development of the present United States standards for transuranic and high-level waste fundamental criteria, derived release limits, and risk limits for probabilistic releases is traced through supporting documentation. The development procedures and the resulting regulations are compared to requirements for the standards, traditional methods of regulating chemical and radiological carcinogens, and recommendations made by the International Commission on Radiological Protection, the Science Advisory Board, the Nuclear Waste Technical Review Board, and individual investigators. The development methodology, logic, assumptions, and models are reviewed relative to the two proposed repositories. Individual difficulties are defined, and their probable causes and potential effects are examined. Several options are suggested for modifying and extending the standards for each of the four major areas; these options make the standards more appropriate for the sites now under consideration, relate them more directly to the actual safety of the repositories, and make them more defensible. Many of the extensions are compatible with the present standards and would not require any significant changes in philosophy, methodology, or format. The benefits of an enhanced quality assurance program are discussed and several other changes in development procedures for waste disposal regulations are suggested. 49 refs., 17 figs., 4 tabs.
This document describes the method developed by Sandia National Laboratories (SNL) to evaluate transducer used in the design certification testing of nuclear material shipping packages. This testing project was performed by SNL for the Office of Civilian Radioactive Waste Management (OCRWM). This evaluation is based on the results of tests conducted to measure ruggedness, failure frequency, repeatability, and manufacturers' calibration data under both field and laboratory conditions. The results of these tests are provided and discussed. The transducer were selected for testing by surveying cask contractors and testing facilities. Important insights relating to operational characteristics of accelerometer types were gained during field testing. 11 refs., 105 figs., 16 tabs.
The use of ground-based lasers to launch small payloads but large total masses into low-Earth orbit may prove to be the most innovative and potentially economical approach for accomplishing this important mission. Of the several possible schemes for laser propulsion, two are examined: (1) ablative momentum transfer using pulsed lasers; and (2) heat exchanger thrusters in conjunction with CW lasers. For an entry-level payload of ~50 kg it is found that the former yields payload-to-power ratios of < 0.5 kg/MW with a requirement for an average laser power of at least 100 MW, whereas the latter might yield 1 to 3 kg/MW with a laser power of several 10s of MW. One of the promising approaches that could yield a driver for such a system is the reactor-pumped laser FALCON, which scales to these power levels with the potential for long run times.
Recognizing the importance of nuclear license renewal to the nation's energy strategy, the Department of Energy (DOE) initiated a plant lifetime improvement program during 1985 to determine the feasibility of the license renewal option for US nuclear plants. Initial activities of the DOE program focused on determining whether there were technical and economic obstacles that might preclude or limit the successful implementation of the license renewal option. To make this determination, DOE cosponsored with the Electric Power Research Institute (EPRI) pilot-plant efforts by Virginia Electric Power and Northern States Power. Both pilot-plant efforts concluded that life extension is technically and economically feasible. In parallel with the pilot-plant activities, DOE performed national economic studies that demonstrated the economic desirability of life extension. Having demonstrated the feasibility of life extension, DOE, in conjunction with EPRI, selected two lead plants to demonstrate the license renewal process. These lead plants are Yankee Atomic's Yankee Rowe facility and Northern States Power's Monticello facility. DOE also initiated activities to develop the technical and regulatory bases to support the license renewal process in the United States. DOE has recently identified nuclear plant license renewal to be an important element of its National Energy Strategy. This paper summarizes the significant results, conclusions, and ongoing activities of the DOE effort.
This talk is about leadership. Leaders are people at every level in an organization who believe in change and are energized by it. They understand the difficult realities of competitive existence. They motivate and challenge. They provide positive reinforcement -- but are never satisfied with their achievements because opportunities for further improvement are never exhausted. Today, leadership is more important than ever because operating environments are changing at an unprecedented rate. The causes are geopolitical, economic, technological, etc. In fact, everything we know about nature tells us that change is inevitable. History shows quite clearly that human progress is not possible without change. Yet, humans crave stability and permanence. As a consequence, success often leads to complacency. But, demise is inevitable for those who protect the status quo. There exists a growing national awareness that global competitive pressures are forcing on American industry the need for ever higher levels of performance. And, similar forces are necessitating improved performance in DOE's nuclear weapons complex. Today, quality takes on a much larger meaning than it has traditionally. It is attention to cost, schedule and product performance that characterize the modern Quality ethic. This paper discusses the manager's role and the new Quality philosophy. 11 figs.
Coupled thermal-structural finite element calculations of a reflux pool-boiler solar receiver were performed to characterize the operating stresses and to address issues affecting the service life of the receiver. Analyses performed using shell elements provided information for receiver material selection and design optimization. Calculations based on linear elastic fracture mechanics principles were performed using continuum elements to assess the vulnerability of a seam-weld to fatigue crack growth. All calculations were performed using ABAQUS, a general purpose finite element code, and elements specifically formulated for coupled thermal-structural analysis. Two materials were evaluated: 316L SS and Haynes 230 alloys. The receiver response was simulated for a combination of structural and thermal loads that represent the startup and operating conditions of the receiver. For both materials, maximum stresses in the receiver developed shortly after startup due to uneven temperature distribution across the receiver surface. The largest effective stress was near yield in the 316L SS receiver and below 39 percent of yield in the Haynes 230 receiver. The calculations demonstrated that stress reductions of over 25 percent could be obtained by reducing the aft dome thickness to one closer to the absorber. The fatigue calculations demonstrated that the stress distribution near the seam-weld notch depends primarily on the structural load created by internal pressurization of the receiver rather than the thermal, indicating that the thermal loads can be neglected when assessing the stress intensity near the seam-weld notch. The stress intensity factor, computed using the J-integral method and crack opening-displacement field equations, was significantly below the fatigue threshold for most steels. The calculations indicated that the weld notch was always loaded in compression, a condition which is not conducive to fatigue crack growth. 15 refs., 30 figs., 3 tabs.
Algorithms for the authentication of byte sequences are described. The algorithms are designed to authenticate data in the Storage, Retrieval, Analysis, and Display (SRAD) Test Data Archive of the Radiation Effects and Testing Directorate (9100) at Sandia National Laboratories, and may be used in similar situations where authentication of stored data is required. The algorithms use a well-known error detection method called the Cyclic Redundancy Check (CRC). When a byte sequence is authenticated and stored, CRC bytes are generated and attached to the end of the sequence. When the authenticated data is retrieved, the authentication check consists of processing the entire sequence, including the CRC bytes, and checking for a remainder of zero. The error detection properties of the CRC are extensive and result in a reliable authentication of SRAD data.
Monitoring wellhead pressure evolution is the best method of detecting crude oil leaks in SPR caverns while oil/brine interface depth measurements provide additional insight. However, to fully utilize the information provided by these interface depth measurements, a thorough understanding of how the interface movement corresponds to cavern phenomena, such as salt creep, crude oil leakage, and temperature equilibration, as well as to wellhead pressure, is required. The time evolution of the oil/brine interface depth is a function of several opposing factors. Cavern closure due to salt creep and crude oil leakage, if present, move the interface upward. Brine removal and temperature equilibration of the oil/brine system move the interface downward. Therefore, the relative magnitudes of these factors determine the net direction of interface movement. Using a mass balance on the cavern fluids, coupled with a simplified salt creep model for closure in SPR caverns, the movement of the oil/brine interface has been predicted for varying cavern configurations, including both right-cylindrical and carrot-shaped caverns. Three different cavern depths and operating pressures have been investigated. In addition, the caverns were investigated at four different points in time, allowing for varying extents of temperature equilibration. Time dependent interface depth changes of a few inches to a few feet were found to be characteristic of the range of cases studied. 5 refs, 19 figs., 1 tab.
In two earlier reports, we derived a time-temperature-dose rate superposition methodology, which, when applicable, can be used to predict cable degradation versus dose rate, temperature and exposure time. This methodology results in long-term predictive capabilities at the low dose rates appropriate to ambient nuclear power plant aging environments. The methodology was successfully applied to numerous important cable materials used in nuclear applications and the extrapolated predictions were verified by comparisons with long-term (7 to 12 year) results for similar or identical materials aged in nuclear environments. In this report, we test the methodology on three crosslinked polyolefin (CLPO) and two ethylene propylene rubber (EPR) cable insulation materials. The methodology applies to one of the CLPO materials and one of the EPR materials, allowing predictions to be made for these materials under low dose-rate, low temperature conditions. For the other materials, it is determined that, at low temperatures, a decrease in temperature at a constant radiation dose rate leads to an increase in the degradation rate for the mechanical properties. Since these results contradict the fundamental assumption underlying time-temperature-dose rate superposition, this methodology cannot be applied to such data. As indicated in the earlier reports, such anomalous results might be expected when attempting to model data taken across the crystalline melting region of semicrystalline materials. Nonetheless, the existing experimental evidence suggests that these CLPO and EPR materials have substantial aging endurance for typical reactor conditions. 28 refs., 26 figs., 3 tabs.
Effective sealing of the Waste Isolation Pilot Plant (WIPP) shafts will be required to isolate defense-generated transuranic wastes from the accessible environment. Shafts penetrate water-bearing hard rock formations before entering a massive creeping-salt formation (Salado) where the WIPP is located. Short and long-term seals are planned for the shafts. Short-term seals, a composite of concrete and bentonite, will primarily be located in the hard rock formations separating the water-bearing zones from the Salado Formation. These seals will limit water flow to the underlying long-term seals in the Salado. The long-term seals will consist of lengthly segments of initially unsaturated crushed salt. Creep closure of the shaft will consolidate unsaturated crushed salt, thereby reducing its permeability. However, water passing through the upper short-term seals and brine inherent to the salt host rock itself will eventually saturate the crushed salt and consolidation could be inhibited. Before saturating, portions of the crushed salt in the shafts are expected to consolidate to a permeability equivalent to the salt host rock, thereby effectively isolating the waste from the overlying water-bearing formations. A phenomenological model is developed for the coupled mechanical/hydrologic behavior of sealed WIPP shafts. The model couples creep closure of the shaft, crushed salt consolidation, and the associated reduction in permeability with Darcy's law for saturated fluid flow to predict the overall permeability of the shaft seal system with time. 17 refs., 6 figs., 1 tab.
The Strategic Petroleum Reserve (SPR), a 600 million barrel crude oil reserve stored primarily in caverns leached in Gulf Coast salt domes, is maintained by the US Department of Energy (DOE). As part of a continuing program to monitor and characterize changes in the oil stored in the reserve, SPR caverns are periodically sampled at varying depths. Several different kinds of samples are withdrawn including pressurized samples, which enable a determination of the oil's vapor pressure and gas/oil ratio. These two parameters are particularly important to drawdown strategies because if the oil contains significant amounts of gas (therefore having a high vapor pressure and gas/oil ratio), additional equipment and decreased removal rates may be required during drawdown. Past pressurized sampling data was wrought with inconsistencies due to improper pressurized sampling and sample analysis techniques. This report documents the findings of an investigation taken to determine the source of the problems in the existing pressurized sampling and sample analysis methods and to establish reliable and cost effective methods of performing these tasks. In particular, flow-through pressurized sampling technology was found to be the most appropriate method of obtaining reliable samples. The gravity transfer method was found to be the most reliable method of moving the sample from the flow-through tool to a transportation container. In regards to sample analysis, it is recommended that gas chromatography replace the antiquated Podbielniak method, that the gas/oil ratio be measured via standard techniques rather than calculated using equations of state, and that a standard method be used to measure the sample's vapor pressure in a constant temperature PVT cell. 24 refs., 33 figs.
Anoxic corrosion and microbial degradation of contact-handled transuranic waste may produce sufficient quantities of gas over a long time period to generate high pressure in the disposal rooms at the Waste Isolation Pilot Plant (WIPP) repository. Dissipation of pressure by outward gas flow will be inhibited by the low permeability of the surrounding rock and by capillary forces that resist gas penetration into this water-saturated rock. Threshold pressure is the gas pressure required to overcome capillary resistance to initial gas penetration and to the development of interconnected gas pathways that would outward gas flow. The primary objectives of this study are to estimate the magnitude of threshold pressure in the bedded salt that surrounds the WIPP repository and to evaluate the role this parameter plays in controlling the outward flow of waste-generated gas. 54 refs., 9 figs., 4 tabs.
The Heat Source/Radioisotopic Thermoelectric Generator shipping container is a Type B packaging design currently under development by Los Alamos National Laboratory. Type B packaging for transporting radioactive material is required to maintain containment and shielding after being exposed to the normal and hypothetical accident environments defined in Title 10 Code of Federal Regulations Part 71. A combination of testing and analysis is used to verify the adequacy of this package design. This report documents the test program portion of the design verification, using several prototype packages. Four types of testing were performed: 30-foot hypothetical accident condition drop tests in three orientations, 40-inch hypothetical accident condition puncture tests in five orientations, a 21 psi external overpressure test, and a normal conditions of transport test consisting of a water spray and a 4 foot drop test. 18 refs., 104 figs., 13 tabs.
This report describes high voltage dc breakdown tests on various PtAu and Au thick film hybrid microcircuits on alumina (Al{sub 2}O{sub 3}). Samples were prepared with current thick film design and manufacturing rules. The purpose was to determine the voltage margins between current design rules and typical applied voltages on real circuits. We also analyzed what happened during a breakdown event. We used a versatile computer-controlled test set to obtain breakdown data. This showed that design conductors 10 mil wide with equal design spaces on alumina and coated with a fired protective glaze (DuPont 9137) had the highest breakdown values (2700 Vdc). Bare design circuits and Au conductor crossover features had a lower breakdown value (1400 to 1600 Vdc). Both these values are well above logic circuit applied voltages ({le}50v). This may account for the excellent field performance obtained to date. Ambient humidity changes to 43% R.H. and voltage rise rates between 3 and 2300 V/sec had little influence on breakdown values ({le}200 Vdc). Voltage breakdown values were little influenced by our two geometries: point-to-line samples which simulated corners and long parallel line samples. Breakdown behaved like a spark in air rather than an arc. Breakdown in glaze went through it to air rather than along the glaze/alumina interface. The spark was found to be similar to lightning in that it consisted of a string of current pulses lasting a total of 1 to 2 seconds. Spark locations were from surface asperities or defects near but not at the point of minimum optically measured separation. Hence, we found that circuits made using current design rules for hybrid microcircuit manufacture are adequate or conservative as regards safe margins against logic voltage dc breakdown to the extent studied here. 13 refs., 19 figs.
Electromagnetic Interference (EMI) problems have resulted in the redesign of the SANDAC V computer case and shielding of its connecting cables. In this report are detailed discussions on the use of computer models and of the tests performed to solve the EMI problems. Included is documentation on the specific changes made to the SANDAC V computer case and the shielding done on the connecting cables. Also documented are the current EMI capabilities relative to MIL Std. 461.
This report represents the first quarterly submittal of data by Sandia National Laboratories (SNL) for the Department Of Energy (DOE) Headquarters Performance Indicator Program. Secretary of Energy Notice (SEN-29-91) directed that a Department-wide uniform systems of Performance Indicators (PIs) for trending and analyzing operational data to help assess and support progress in improving performance and in strengthening line management control of operations relating to environmental, safety, and health activities'' be developed. Trending and analysis of data depicting the performance of facilities is an essential element in creating a culture of continuous improvement,'' where performance gains are maintained and deteriorating environmental, safety, and health conditions are identified early. In addition, good practices that can benefit other DOE operations areas should be identified. The program defines 21 Pi's grouped into four broad areas: (1) personnel safety; (2) operational incidents; (3) environmental releases (normal operations); and (4) management (including waste generation). SNL is required to submit data on 21 PIs for four facilities/reporting elements that were selected by DOE at Albuquerque and Livermore. 31 figs.
In the certification of packages for transport of radioactive material, the issue of slapdown must be addressed. Slapdown is a secondary impact of the body caused by rotational accelerations induced during eccentric primary impact. In this report, several parameters are evaluated that affect slapdown severity of packages for the transport of nuclear material. The nose and tail accelerations in a slapdown event are compared to those experienced by the same cask in a side-drop configuration, in which there is no rotation, for a range of initial impact angles, impact limiter models, and friction coefficients for two existing cask geometries. In some cases, the rotation induced during a shallow-angle impact is sufficient to cause accelerations at the tail during secondary impact to be greater than those at the nose during initial impact. Furthermore, both nose and tail accelerations are often greater than the side-on accelerations. The results described here have been calculated using the code SLAPDOWN, which approximates the impact response of deformable bodies. Finally, SLAPDOWN has been used to estimate the coefficient of friction acting at the nose and tail for one particular cask during one specific slapdown drop test by comparison of results with experimental data. 2 refs., 16 figs., 3 tabs.
Two methods for modeling arbitrary narrow apertures in finite- difference time-domain (FDTD) codes are presented in this paper. The first technique is based on the hybrid thin-slot algorithm (HTSA) which models the aperture physics using an integral equation approach. This method can model slots that are narrow both in width and depth with regard to the FDTD spatial cell, but is restricted to planar apertures. The second method is based on a contour technique that directly modifies the FDTD equations local to the aperture. The contour method is geometrically more flexible than the HTSA, but the depth of the aperture is restricted to the actual FDTD mesh. A technique to incorporate both narrow-aperture algorithms into the FDTD code, TSAR, based on a slot data file'' is presented in this paper. Results for a variety of complex aperture contours are provided, and limitations of the algorithms are discussed.
The results of a Sandia National Laboratories program to design and develop a high-current thermal battery for the Hypersonic Weapons Technology Program are presented. The feasibility of a 200 A, 150 s, 12 Vdc primary battery was demonstrated under ambient conditions. New header feedthrough design concepts were used, and new internal current collectors and internal power leads were considered. The Li(Si)/LiBr-LiCl-LiF/FeS{sub 2} electrochemical system has shown exceptional performance at the high-current operation conditions. A high-rate Zinc/Silver Oxide secondary cell was also evaluated, and the results are presented in this report. These cells exhibited excellent high-rate discharge performance. 5 refs., 19 figs., 8 tabs.
A Performance Assessment Calculational Exercise for 1990 (PACE-90) was coordinated by the Yucca Mountain Site Characterization Project Office for a total-system performance-assessment problem. The primary objectives of the exercise were to develop performance-assessment computational capabilities of the Yucca Mountain Project participates and to aid in identifying critical elements and processes associated with the calculation. The problem defined for PACE-90 was simulation of a ``nominal case`` groundwater flow and transport of a selected group of radionuclides through a portion of Yucca Mountain. Both 1-D and 2-D calculations were run for a modeling period of 100,000 years. The nuclides used, {sup 99}Tc, {sup 135}Cs, {sup 129}I, and {sup 237}Np, were representative of ``classes`` of long-lived nuclides expected to be present in the waste inventory. Movement of the radionuclides was simulated through a detailed hydrostratigraphy developed from Yucca Mountain data specifically for this exercise. The results showed that, for the specified conditions with the conceptual models used in the problem, no radioactive contamination reached the water table, 230 m below the repository. However, due to the unavailability of sufficient site-specific data, the results of this exercise cannot be considered a comprehensive total-system- performance assessment of the Yucca Mountain site as a high-level- waste repository. 46 refs., 94 figs., 19 tabs.
Hydrogen is highly mobile in Si and vitreous SiO2, and it reacts strongly with dangling bonds residing on Si and O atoms. These interactions have important consequences for metal-oxide- semiconductor structures, with noteworthy effects including the passivation of electrically active defects, mediation of radiation sensitivity, chemical passivation of etched Si surfaces, and still poorly understood effects on epitaxial growth from H-containing media. Despite the significance of these H reactions, fundamental understanding of them has remained seriously deficient; the H bonding energies have been known semiquantitatively at best, and the detailed reaction paths and rate-determining energetics of intermediate states have remained largely speculative. We are addressing these issues through a coordinated program of experiment and theory with the goal of a unified, quantitatively predictive understanding.