Publications
Search results
Jump to search filtersThermal expansion, thermal conductivity, and heat capacity measurements for boreholes UE25 NRG-4, UE25 NRG-5, USW NRG-6, and USW NRG-7/7A
Specimens were tested from four thermal-mechanical units, namely Tiva Canyon (TCw), Paintbrush Tuff (PTn), and two Topopah Spring units (TSw1 and TSw2), and from two lithologies, i.e., welded devitrified (TCw, TSw1, TSw2) and nonwelded vitric tuff (PTn). Thermal conductivities in W(mk){sup {minus}1} averaged over all boreholes, ranged (depending upon temperature and saturation state) from 1.2 to 1.9 for TCw, from 0.4 to 0.9 for PTn, from 1.0 to 1.7 for TSw1, and from 1.5 to 2.3 for TSw2. Mean coefficients of thermal expansion were highly temperature dependent and values, averaged over all boreholes, ranged (depending upon temperature and saturation state) from 6.6 {times} 10{sup {minus}6} to 49 {times} 10{sup {minus}6} C{sup {minus}1} for TCw, from the negative range to 16 {times} 10{sup {minus}6} {center_dot} {degree}C{sup {minus}1} for PTn, from 6.3 {times} 10{sup {minus}6} to 44 {times} 10{sup {minus}6} C{sup {minus}1} for TSw1, and from 6.7 {times} 10{sup {minus}6} to 37 {times} 10{sup {minus}6} {center_dot} {degree}C{sup {minus}1} for TSw2. Mean values of thermal capacitance in J/cm{sup 3}K (averaged overall specimens) ranged from 1.6 J to 2.1 for TSw1 and from 1.8 to 2.5 for TSw2. In general, the lithostratigraphic classifications of rock assigned by the USGS are consistent with the mineralogical data presented in this report.
Battery energy storage market feasibility study -- Expanded report
Kraft, S.; Akhil, A.
Under the sponsorship of the US Department of Energy`s Office of Utility Technologies, the Energy Storage Systems Analysis and Development Department at Sandia National Laboratories (SNL) contracted Frost and Sullivan to conduct a market feasibility study of energy storage systems. The study was designed specifically to quantify the battery energy storage market for utility applications. This study was based on the SNL Opportunities Analysis performed earlier. Many of the groups surveyed, which included electricity providers, battery energy storage vendors, regulators, consultants, and technology advocates, viewed battery storage as an important technology to enable increased use of renewable energy and as a means to solve power quality and asset utilization issues. There are two versions of the document available, an expanded version (approximately 200 pages, SAND97-1275/2) and a short version (approximately 25 pages, SAND97-1275/1).
Models and correlations of the DEBRIS Late-Phase Melt Progression Model
Gasser, R.D.
The DEBRIS Late Phase Melt Progression Model is an assembly of models, embodied in a computer code, which is designed to treat late-phase melt progression in dry rubble (or debris) regions that can form as a consequence of a severe core uncover accident in a commercial light water nuclear reactor. The approach is fully two-dimensional, and incorporates a porous medium modeling framework together with conservation and constitutive relationships to simulate the time-dependent evolution of such regions as various physical processes act upon the materials. The objective of the code is to accurately model these processes so that the late-phase melt progression that would occur in different hypothetical severe nuclear reactor accidents can be better understood and characterized. In this report the models and correlations incorporated and used within the current version of DEBRIS are described. These include the global conservation equations solved, heat transfer and fission heating models, melting and refreezing models (including material interactions), liquid and solid relocation models, gas flow and pressure field models, and the temperature and compositionally dependent material properties employed. The specific models described here have been used in the experiment design analysis of the Phebus FPT-4 debris-bed fission-product release experiment. An earlier DEBRIS code version was used to analyze the MP-1 and MP-2 late-phase melt progression experiments conducted at Sandia National Laboratories for the US Nuclear Regulatory Commission.
Systems study of drilling for installation of geothermal heat pumps
Geothermal, or ground-source, heat pumps (GHP) are much more efficient than air-source units such as conventional air conditioners. A major obstacle to their use is the relatively high initial cost of installing the heat-exchange loops into the ground. In an effort to identify drivers which influence installation cost, a number of site visits were made during 1996 to assess the state-of-the-art in drilling for GHP loop installation. As an aid to quantifying the effect of various drilling-process improvements, we constructed a spread-sheet based on estimated time and material costs for all the activities required in a typical loop-field installation. By substituting different (improved) values into specific activity costs, the effect on total project costs can be easily seen. This report contains brief descriptions of the site visits, key points learned during the visits, copies of the spread-sheet, recommendations for further work, and sample results from sensitivity analysis using the spread-sheet.
Scaling vectors and multiwavelets in numerical differential equations -- Some approximation-theoretic and numerical issues
Massopust, P.T.
Galerkin approximations and finite element methods for operator equations of the form Lu = f play an important role in the theory of numerical differential equations. This report summarizes some of the approximation-theoretic and numerical issues encountered in solving operator equations of the form Lu = f. Particular emphasis is placed on Galerkin and finite element approximations using multiwavelets. Examples are used to illustrate some of the issues.
Method for measuring deuterium in erbium deuteride films
Determining the quantity of deuterium in an erbium deuteride (ErD{sub 2}) film is essential for assessing the quality of the hydriding process but is a challenging measurement to make. First, the ideal gas law cannot be applied directly due to high temperature (950{degrees}C) and low temperature (25{degrees}C) regions in the same manifold. Additionally, the metal hydride does not release all of the deuterium rapidly upon heating and metal evaporation occurs during extended heating periods. Therefore, the method developed must provide a means to compensate for temperature inhomogeneities and the amount of deuterium retained in the metal film while heating for a minimal duration. This paper presents two thermal desorption methods used to evaluate the kinetics and equilibria of the deuterium desorption process at high temperatures (950{degrees}C). Of primary concern is the evaluation of the quantity of deuterium remaining in these films at the high temperature. A multiple volume expansion technique provided insight into the kinetics of the deuterium evolution and metal evaporation from the film. Finally a repeated pump-down approach yielded data that indicated approximately 10% of the deuterium is retained in the metal film at 950{degrees}C and approximately 1 Torr pressure. When the total moles of deuterium determined by this method were divided by the moles of erbium determined by ICP/AES, nearly stochiometric values of 2:1 were obtained for several erbium dideuteride films. Although this work presents data for erbium and deuterium, these methods are applicable to other metal hydrides as well.
Simulation of orthogonal cutting with smooth particle hydrodynamics
There is an active literature on the simulation of cutting processes through finite element methods. Such efforts are motivated by the enormous economic importance of machining processes and the desire to adjust processes so as to optimize product and throughput, but suffer from some difficulties inherent to the finite element method. An alternative approach, which appears to overcome most of those difficulties, is that of Smooth Particle Hydrodynamics (SPH).Though some finite element work is reviewed here, the focus of this paper is on the demonstration of the SPH technique of to simulate orthogonal cutting.
Radiation transport phenomena and modeling. Part A: Codes; Part B: Applications with examples
This report contains the notes from the second session of the 1997 IEEE Nuclear and Space Radiation Effects Conference Short Course on Applying Computer Simulation Tools to Radiation Effects Problems. Part A discusses the physical phenomena modeled in radiation transport codes and various types of algorithmic implementations. Part B gives examples of how these codes can be used to design experiments whose results can be easily analyzed and describes how to calculate quantities of interest for electronic devices.
Structural health monitoring of wind turbines
To properly determine what is needed in a structural health monitoring system, actual operational structures need to be studied. We have found that to effectively monitor the structural condition of an operational structure four areas must be addressed: determination of damage-sensitive parameters, test planning, information condensation, and damage identification techniques. In this work, each of the four areas has been exercised on an operational structure. The structures studied were all be wind turbines of various designs. The experiments are described and lessons learned will be presented. The results of these studies include a broadening of experience in the problems of monitoring actual structures as well as developing a process for implementing such monitoring systems.
Department of Energy nuclear material physical protection program in the Republic of Kazakstan
Eras, A.; Berry, R.B.; Case, R.S.
As part of the joint U.S. and Republic of Kazakstan nuclear Material Protection, Control, and Accounting (MPC{ampersand}A) program, the U.S. Department of Energy (DOE) is providing assistance at four nuclear facilities in Kazakstan. These facilities are the Ulba Metallurgical Plant, the National Nuclear Center (NNC) Institute of Atomic Energy at Kurchatov (IAE-K), the Mangyshlak Atomic Energy Complex (BN-350) Reactor, and the NNC Institute of Atomic Energy at Almaty (IAE-A). This paper describes the DOE MPC{ampersand}A physical protection program at each of the facilities.
Remote monitoring for international safeguards
Remote monitoring is not a new technology, and its application to safeguards relevant activities has been examined for a number of years. On behalf of the US Department of Energy and international partners, remote monitoring systems have been emplaced in nuclear facilities and laboratories in various parts of the world. The experience gained from these field trials of remote monitoring systems has shown the viability of the concept of using integrated monitoring systems. Although a wide variety of sensors has been used in the remote monitoring field trials conducted to date, the possible range of instrumentation that might be used has scarcely been touched. As the technology becomes widespread, large amounts of data will become available to inspectors responsible for safeguards activities at the sites. Effective use of remote monitoring will require processing, archiving, presenting, and assessing of these data. To provide reasonable efficiency in the application of this technology, data processing should be done in a careful and organized manner. The problem will be not an issue of poring over scant records but of surviving under a deluge of information made possible by modern technology. Fortunately, modern technology, which created the problem of the data glut, is available to come to the assistance of those inundated by data. Apart from the technological problems, one of the most important aspects of remote monitoring is the potential constraint related to the transmission of data out of a facility or beyond national borders. Remote monitoring across national borders can be seriously considered only in the context of a comprehensive, transparent, and open implementation regime.
Evidence that Arrhenius high-temperature aging behavior for an EPDM o-ring does not extrapolate to lower temperatures
Because of the need to significantly extend the lifetimes of weapons, and because of potential implications of environmental O-ring failure on degradation of critical internal weapon components, the authors have been working on improved methods of predicting and verifying O-ring lifetimes. In this report, they highlight the successful testing of a new predictive method for deriving more confident lifetime extrapolations. This method involves ultrasensitive oxygen consumption measurements. The material studied is an EPDM formulation use for the environmental O-ring the W88. Conventional oven aging (155 C to 111 C) was done on compression molded sheet material; periodically, samples were removed from the ovens and subjected to various measurements, including ultimate tensile elongation, density and modulus profiles. Compression stress relaxation (CSR) measurements were made at 125 C and 111 C on disc shaped samples (12.7 mm diameter by 6 mm thick) using a Shawbury Wallace Compression Stress Relaxometer MK 2. Oxygen consumption measurements were made versus time, at temperatures ranging from 160 C to 52 C, using chromatographic quantification of the change in oxygen content caused by reaction with the EPDM material in sealed containers.
Critical heat flux performance of hypervapotrons proposed for use in the ITER divertor vertical target
Task T-222 of the International Thermonuclear Experimental Reactor (ITER) program addresses the manufacturing and testing of permanent components for use in the ITER divertor. Thermalhydraulic and critical heat flux performance of the heat sinks proposed for use in the divertor vertical target are part of subtask T-222.4. As part of this effort, two single channel, medium scale, bare copper alloy, hypervapotron mockups were designed, fabricated, and tested using the EB-1200 electron beam system. The objectives of the effort were to develop the design and manufacturing procedures required for construction of robust high heat flux (HHF) components, verify thermalhydraulic, thermomechanical and critical heat flux (CHF) performance under ITER relevant conditions, and perform analyses of HHF data to identify design guidelines and failure criteria and possibly modify any applicable CHF correlations. The design, fabrication, and finite element modeling of two types of hypervapotrons are described; a common version already in use at the Joint European Torus (JET) and a new attached fin design. HHF test data on the attached fin hypervapotron will be used to compare the CHF performance under uniform heating profiles on long heated lengths with that of localized, highly peaked, off nominal profiles.
Public outcomes: Building a 21st century national innovation system that serves the public
Federal R and D must be principally focused on solving public problems that the marketplace is failing to address. With few exceptions programs must be supported by roadmaps that show how the R and D is linked to public outcomes. Federal R and D and those who perform it must be judged in terms of the public outcomes. The overarching issues of federal R and D policy, what it should address, how to manage it, who should perform it, how to perform it, what works best, etc. are highly complex and lack a strong theoretical foundation. (In fact, the linear, assembly-line model used by policymakers is wrong.) It is time that policymakers recognize and acknowledge the uncertainty of their work and conduct a wide array of policy experiments (the authors consider SEMATECH such an experiment) that are supported by public outcome metrics. In addition to making federal R and D better address public needs, such an approach to policy making could raise the public`s interest in T and S policy. Of course, as in any experiment the results may be measured and if failures aren`t observed, it is likely that policies lack vision and imagination. It is time to abandon the budget driven federal R and D system where performers of federal R and D are treated as constituents, and replace it with a public problem--public outcome driven system where public problems are prioritized and the budget is distributed to agencies according to these priorities.
A hardware review of electrical contact aging and performance in electromechanical stronglinks
Contacts from the functional switch assembly have been examined for a series of MC2969 stronglinks varying from 9 to 14 years of age. Wear tracks are apparent on the contacts as a result of oxide removal by wiping action as the switch is exercised. Typical contaminants observed on the contacts include C, O, S, Cl, F and Si, all of which vary with position on the contacts. All of the contacts show segregation of Ag into the near-surface region. Measurement of the local contact resistance on the ends of the contacts provide resistance values that are reasonable for this material, but with variation among contacts as a result of changes in the local surface chemistry.
Battery evaluation methods and results for stationary applications
Evaluation of flooded lead-acid, Valve Regulated Lead-Acid (VRLA), and advanced batteries is being performed in the power sources testing labs at Sandia National Laboratories (SNL). These independent, objective tests using computer-controlled testers capable of simulating application-specific test regimes provide critical data for the assessment of the status of these technologies. Several different charge/discharge cycling regimes are performed. Constant current and constant power discharge tests are conducted to verify capacity and measure degradation. A utility test is imposed on some units which consists of partial depths of discharge (pulsed constant power) cycles simulating a frequency regulation operating mode, with a periodic complete discharge simulating a spinning reserve test. This test profile was developed and scaled based on operating information from the Puerto Rico Electric Power Authority (PREPA) 20 MW battery energy storage system. Another test conducted at SNL is a photovoltaic battery life cycle test, which is a partial depth of discharge test (constant current) with infrequent complete recharges that simulates the operation of renewable energy systems. This test profile provides renewable system designers with critical battery performance data representative of field conditions. This paper will describe the results of these tests to date, and include analysis and conclusions.
Recycling readiness of advanced batteries for electric vehicles
Maximizing the reclamation/recycle of electric-vehicle (EV) batteries is considered to be essential for the successful commercialization of this technology. Since the early 1990s, the US Department of Energy has sponsored the ad hoc advanced battery readiness working group to review this and other possible barriers to the widespread use of EVs, such as battery shipping and in-vehicle safety. Regulation is currently the main force for growth in EV numbers and projections for the states that have zero-emission vehicle (ZEV) programs indicate about 200,000 of these vehicles would be offered to the public in 2003 to meet those requirements. The ad hoc Advanced Battery Readiness Working Group has identified a matrix of battery technologies that could see use in EVs and has been tracking the state of readiness of recycling processes for each of them. Lead-acid, nickel/metal hydride, and lithium-ion are the three EV battery technologies proposed by the major automotive manufacturers affected by ZEV requirements. Recycling approaches for the two advanced battery systems on this list are partly defined, but could be modified to recover more value from end-of-life batteries. The processes being used or planned to treat these batteries are reviewed, as well as those being considered for other longer-term technologies in the battery recycling readiness matrix. Development efforts needed to prepare for recycling the batteries from a much larger EV population than exists today are identified.
Data quality improvements for FAA
Effective communication among air safety professionals is only as good as the information being communicated. Data sharing cannot be effective unless the data are relevant to aviation safety problems, and decisions based on faulty data are likely to be invalid. The validity of aviation safety data depends on satisfying two primary characteristics. Data must accurately represent or conform to the real world (conformance), and it must be relevant or useful to addressing the problems at hand (utility). The FAA, in efforts to implement the Safety Performance Analysis System (SPAS), identified significant problems in the quality of the data which SPAS and FAA air safety professionals would use in defining the state of aviation safety in the US. These finding were reinforced by Department of Transportation Inspector General and General Accounting Office investigations into FAA surveillance of air transport operations. Many recent efforts to improve data quality have been centered on technological solutions to the problems. They concentrate on reducing errors in the data (conformance), but they cannot adequately address the relationship of data to need (utility). Sandia National Laboratories, working with the FAA`s Airport and Aircraft Safety Research and Development Division and the Flight Standards Service, has been involved in four programs to assist FAA in addressing their data quality problems. The Sandia approach has been data-driven rather than technology-driven. In other words, the focus has been on first establishing the data requirements by analyzing the FAA`s surveillance and decision-making processes. This process analysis looked at both the data requirements and the methods used to gather the data in order to address both the conformance and utility problems inherent in existing FAA data systems. This paper discusses Sandia`s data quality programs and their potential improvements to the safety analysis processes and surveillance programs of the FAA.
Lifetime predictions for alumina ceramics used in nuclear weapons stockpile components
Ceramic materials are used extensively in non-nuclear components in the weapons stockpile including neutron tubes, firing sets, radar, strong link and weak link assemblies, batteries, and current/voltage stacks. Ceramics also perform critical functions in electronics, passively as insulators and actively as resistors and capacitors. Glass and ceramic seals also provide hermetic electrical feedthroughs in connectors for many weapons components. The primary goal of the ceramic material lifetime prediction program is to provide the enhanced surveillance program with the capability to specify the reliability and lifetimes of glass and ceramic-containing components under conditions typical of the stockpile environment. The authors have studied the reliability and subcritical crack growth (SCG) behavior of 94% alumina (Al{sub 2}O{sub 3}), which is likely the most common ceramic in the stockpile. Measurements have been made on aluminas manufactured by four war reserve qualified vendors (Coors, Wesgo, AlSiMag, and Diamonite). These materials are expected to be representative of typical product obtained from vendors who have supplied alumina for weapons components during the past several decades.
Aging model for solid lubricants used in weapon stronglinks: tribological performance and hardware review
The solid lubricant used most extensively in strong links throughout the enduring stockpile contains MoS{sub 2}, which is known to react with oxygen and water vapor resulting in a change in the material`s friction and wear behavior. The authors have examined the frictional behavior of this lubricant as a function of oxidation, in support of efforts to quantify the impact of changes in the material on the dynamic behavior of the MC2969 strong link. Their results show that the friction response of oxidized lubricant is strongly influenced by the amount of burnishing performed on the lubricant after deposition. Low levels of burnish leave a thick film, of which only the near surface degrades during oxidation. Rapid wear of the oxidized material leaves a surface whose properties are the same as non-oxidized material. Higher levels of burnish leave a thinner film of lubricant such that the entire film may be oxidized. The friction coefficient on this surface reaches a steady state value greater than that of non oxidized material. In addition to these fundamental differences in steady state behavior, they have shown that the initial friction coefficient on oxidized surfaces is related to the amount of sulfide converted to sulfate, regardless of the oxidation conditions used. Measurements on parts returned from the stockpile show that the friction behavior of aged hardware is consistent with the behavior observed on controlled substrates containing thin lubricant films.
Independent communication messages: methodology and applications
Information flowing on communication buses is ordinarily ``non-random`` in the sense that data entities are not equally likely and independent. This is because they have relationships to each other and to physical occurrences to which they may be responding. Random data would convey no information or meaning. From a different viewpoint, there can be applications for creating randomness characteristics, and four of these are described in this paper. Two examples derive from cryptology and the other two from safety. One cryptology application described is the generation of random numbers for use as, for example, keys, hash functions, nonces, and seeds. The other is for inter-message ``padding`` to resist traffic analysis by masking when data are being transmitted and when the channel is conveying no information. One of the safety applications described is the ``unique signal`` approach used in modern nuclear weapon electrical safety. The other is the use of unique signals as non-weapon critical-operation control functions. Both of these safety applications require provisions to help assure randomness characteristics in any inadvertently occurring inputs. In order to satisfy these cryptology and safety needs, communication strategies are described that generate or selectively encourage independent (unrelated) symbols or messages.
Laser assisted non-consumable arc welding process development
The employment of Laser Beam Welding (LBW) for many traditional arc welding applications is often limited by the inability of LBW to compensate for variations in the weld joint gap. This limitation is associated with fluctuations in the energy transfer efficiency along the weld joint. Since coupling of the laser beam to the workpiece is dependent on the maintenance of a stable absorption keyhole, perturbations to the weld pool can lead to decreased energy transfer and resultant weld defects. Because energy transfer in arc welding does not similarly depend on weld pool geometry, it is expected that combining these two processes together will lead to an enhanced fusion welding process that exhibits the advantages of both arc welding and LBW. Laser assisted non-consumable arc welds have been made on thin section aluminum. The welds combine the advantages of arc welding and laser welding, with enhanced penetration and fusion zone size. The use of a pulsed Nd:YAG laser with the combined process appears to be advantageous since this laser is effective in removing the aluminum oxide and thereby allowing operation with the tungsten electrode negative. The arc appears to increase the size of the weld and also to mitigate hot cracking tendencies that are common with the pulsed Nd:YAG laser.
Aging model for solid lubricants used in weapon stronglinks: Oxidation chemistry and hardware review
In support of efforts to model the performance of the MC2969 strong link for stockpile life extension, the kinetics of oxidation of the MoS{sub 2} based solid lubricant coating have been determined. The lubricant oxidation is primarily influenced by the extent of burnishing of the coating after application and curing. The activation energy for lubricant oxidation is low and agrees well with reported values for MoS{sub 2} coatings and particles. The type of substrate material and the amount of H{sub 2}O vapor present have little influence on the oxidation kinetics, but do affect the chemical species found on the surface, including sulfate species which enhance substrate corrosion. The analysis of field returned hardware shows oxidation levels within the range of those obtained throughout the oxidation study.
Orthogonal spectra and cross sections: Application to optimization of multi-spectral absorption and fluorescence lidar
This report addresses the problem of selection of lidar parameters, namely wavelengths for absorption lidar and excitation fluorescence pairs for fluorescence lidar, for optimal detection of species. Orthogonal spectra and cross sections are used as mathematical representations which provide a quantitative measure of species distinguishability in mixtures. Using these quantities, a simple expression for the absolute error in calculated species concentration is derived and optimization is accomplished by variation of lidar parameters to minimize this error. It is shown that the optimum number of wavelengths for detection of a species using absorption lidar (excitation fluorescence pairs for fluorescence lidar) is the same as the number of species in the mixture. Each species present in the mixture has its own set of optimum wavelengths. There is usually some overlap in these sets. The optimization method is applied to two examples, one using absorption and the other using fluorescence lidar, for analyzing mixtures of four organic compounds. The effect of atmospheric attenuation is included in the optimization process. Although the number of optimum wavelengths might be small, it is essential to do large numbers of measurements at these wavelengths in order to maximize canceling of statistical errors.
A multi-objective dynamic programming approach to constrained discrete-time optimal control
Driessen, B.J.; Kwok, K.S.
This work presents a multi-objective differential dynamic programming approach to constrained discrete-time optimal control. In the backward sweep of the dynamic programming in the quadratic sub problem, the sub problem input at a stage or time step is solved for in terms of the sub problem state entering that stage so as to minimize the summed immediate and future cost subject to minimizing the summed immediate and future constraint violations, for all such entering states. The method differs from previous dynamic programming methods, which used penalty methods, in that the constraints of the sub problem, which may include terminal constraints and path constraints, are solved exactly if they are solvable; otherwise, their total violation is minimized. Again, the resulting solution of the sub problem is an input history that minimizes the quadratic cost function subject to being a minimizer of the total constraint violation. The expected quadratic convergence of the proposed algorithm is demonstrated on a numerical example.
Decentralized fuzzy control of multiple nonholonomic vehicles
Driessen, B.J.; Feddema, J.T.; Kwok, K.S.
This work considers the problem of controlling multiple nonholonomic vehicles so that they converge to a scent source without colliding with each other. Since the control is to be implemented on simple 8-bit microcontrollers, fuzzy control rules are used to simplify a linear quadratic regulator control design. The inputs to the fuzzy controllers for each vehicle are the (noisy) direction to the source, the distance to the closest neighbor vehicle, and the direction to the closest vehicle. These directions are discretized into four values: Forward, Behind, Left, and Right, and the distance into three values: Near, Far, Gone. The values of the control at these discrete values are obtained based on the collision-avoidance repulsive forces and the change of variables that reduces the motion control problem of each nonholonomic vehicle to a nonsingular one with two degrees of freedom, instead of three. A fuzzy inference system is used to obtain control values for inputs between the small number of discrete input values. Simulation results are provided which demonstrate that the fuzzy control law performs well compared to the exact controller. In fact, the fuzzy controller demonstrates improved robustness to noise.
A system safety approach to the FAA surveillance process
As commercial air travel grows in terms of the number of passenger miles flown, there is expected to be a corresponding dramatic increase in the absolute number of accidents. This despite an enviable safety record and a very low accident rate. The political environment is such that an increase in the absolute number of accidents is not acceptable, with a stated goal of a factor of five reduction in the aviation fatal accident rate within ten years. The objective of this project is to develop an improved surveillance process that will provide measurements of the current state-of-health and predictions of future state of health of aircraft, operators, facilities, and personnel. Methodologies developed for nuclear weapon safety, in addition to more well known system safety and high-consequence engineering techniques, will be used in this approach.
Direct-write fabrication of integrated, multilayer ceramic components
The need for advanced (electronic) ceramic components with smaller size, greater functionality, and enhanced reliability requires the ability to integrate electronic ceramics in complex 3-D architectures. For rapid prototyping and small-lot manufacturing, traditional tape casting and screen printing approaches are poorly suited. To address this need, the authors are developing a direct-write approach for fabricating highly integrated, multilayer components using a micropen to deposit slurries in precise patterns. With this technique, components can be constructed layer by layer, simplifying fabrication. It can also be used to produce structures combining several materials in a single layer. The parts are either cofired or sequentially fired, after each layer is deposited. Since differential shrinkage can lead to defects in these multilayer structures, they are characterizing the sintering behavior of individual layers. This technique has been used to fabricate devices such integrated RC filters, multilayer voltage transformers, and other passive components. The direct-write approach provides the ability to fabricate multifunctional, multimaterial integrated ceramic components (MMICCs) in an agile and rapid way.
NN-SITE: A remote monitoring testbed facility
DOE, Aquila Technologies, LANL and SNL recently launched collaborative efforts to create a Non-Proliferation Network Systems Integration and Test (NN-Site, pronounced N-Site) facility. NN-Site will focus on wide area, local area, and local operating level network connectivity including Internet access. This facility will provide thorough and cost-effective integration, testing and development of information connectivity among diverse operating systems and network topologies prior to full-scale deployment. In concentrating on instrument interconnectivity, tamper indication, and data collection and review, NN-Site will facilitate efforts of equipment providers and system integrators in deploying systems that will meet nuclear non-proliferation and safeguards objectives. The following will discuss the objectives of ongoing remote monitoring efforts, as well as the prevalent policy concerns. An in-depth discussion of the Non-Proliferation Network Systems Integration and Test facility (NN-Site) will illuminate the role that this testbed facility can perform in meeting the objectives of remote monitoring efforts, and its potential contribution in promoting eventual acceptance of remote monitoring systems in facilities worldwide.
US Department of Energy (DOE)/Gosatomnadzor (GAN) of Russia project at the Petersburg Nuclear Physics Institute (PNPI)
This paper presents a summary of work accomplished within the scope of the DOE-Gosatomnadzor (GAN) Agreement to reduce vulnerability to theft of direct-use nuclear materials in Russia. The DOE-GAN agreement concerns the Russian Academy of Science B.P. Konstantinov Petersburg Nuclear Physics Institute (PNPI), located 45 kilometers from St. Petersburg. The PNPI operates facilities to research basic nuclear physics. Current world conditions require particular attention to the issue of Material Protection, Control, and Accounting (MPC&A) of nuclear materials. The long-term plan to increase security at the facility is outlined, including training, physical protection upgrades, and material control and accountability. 4 figs.
International remote monitoring project Argentina Nuclear Power Station Spent Fuel Transfer Remote Monitoring System
The Autoridad Regulataria Nuclear (ARN) and the United States Department of Energy (DOE) are cooperating on the development of a Remote Monitoring System for nuclear nonproliferation efforts. A Remote Monitoring System for spent fuel transfer will be installed at the Argentina Nuclear Power Station in Embalse, Argentina. The system has been designed by Sandia National Laboratories (SNL), with Los Alamos National Laboratory (LANL) and Oak Ridge National Laboratory (ORNL) providing gamma and neutron sensors. This project will test and evaluate the fundamental design and implementation of the Remote Monitoring System in its application to regional and international safeguards efficiency. This paper provides a description of the monitoring system and its functions. The Remote Monitoring System consists of gamma and neutron radiation sensors, RF systems, and video systems integrated into a coherent functioning whole. All sensor data communicate over an Echelon LonWorks Network to a single data logger. The Neumann DCM 14 video module is integrated into the Remote Monitoring System. All sensor and image data are stored on a Data Acquisition System (DAS) and archived and reviewed on a Data and Image Review Station (DIRS). Conventional phone lines are used as the telecommunications link to transmit on-site collected data and images to remote locations. The data and images are authenticated before transmission. Data review stations will be installed at ARN in Buenos Aires, Argentina, ABACC in Rio De Janeiro, IAEA Headquarters in Vienna, and Sandia National Laboratories in Albuquerque, New Mexico. 2 refs., 2 figs.
Rapid deployment intrusion detection system
A rapidly deployable security system is one that provides intrusion detection, assessment, communications, and annunciation capabilities; is easy to install and configure; can be rapidly deployed, and is reusable. A rapidly deployable intrusion detection system (RADIDS) has many potential applications within the DOE Complex: back-up protection for failed zones in a perimeter intrusion detection and assessment system, intrusion detection and assessment capabilities in temporary locations, protection of assets during Complex reconfiguration, and protection in hazardous locations, protection of assets during Complex reconfiguration, and protection in hazardous locations. Many DOE user-need documents have indicated an interest in a rapidly deployable intrusion detection system. The purpose of the RADIDS project is to design, develop, and implement such a system. 2 figs.
Beloyarsk Nuclear Power Plant
The Beloyarsk Nuclear Power Plant (BNPP) is located in Zarechny, approximately 60 km east of Ekaterinberg along the Trans-Siberian Highway. Zarechny, a small city of approximately 30,000 residents, was built to support BNPP operations. It is a closed city to unescorted visitors. Residents must show identification for entry. BNPP is one of the first and oldest commercial nuclear power plants in Russia and began operations in 1964. As for most nuclear power plants in the Russian Federation, BNPP is operated by Rosenergoatom, which is subordinated to the Ministry of Atomic Energy of the Russian Federation (Minatom). BNPP is the site of three nuclear reactors, Units 1, 2, and 3. Units 1 and 2, which have been shut-down and defueled, were graphite moderated reactors. The units were shut-down in 1981 and 1989. Unit 3, a BN-600 reactor, is a 600 MW(electric) sodium-cooled fast breeder reactor. Unit 3 went on-line in April 1980 and produces electric power which is fed into a distribution grid and thermal power which provides heat to Zarechny. The paper also discusses the SF NIKIET, the Sverdiovsk Branch of NIKIET, Moscow, which is the research and development branch of the parent NIKEIT and is primarily a design institute responsible for reactor design. Central to its operations is a 15 megawatt IVV research reactor. The paper discusses general security and fissile material control and accountability at these two facilities.
Developing indigenous safeguards capabilities within the MPC&A program: A transition from near-term upgrades to long-term sustainability
Approximately five years ago, the United States and countries of & Former Soviet Union (FSU) started the Cooperative Threat Reduction program. The program`s purpose was to accelerate reduction of the risk of nuclear proliferation, including such threats as theft, diversion, and unauthorized possession of nuclear materials. This goal would be accomplished through near-term upgrades to strengthen the nuclear material protection, control, and accounting systems within the FSU countries. In addition to this near-term goal, a long-term goal of the U.S. Department of Energy`s (DOE) Material Protection, Control, and Accounting (MPC&A) program is to promote a new safeguards culture and to support the establishment of a sustaining MPC&A infrastructure in the FSU. This long-term goal is vital to assuring that the near-term upgrades remain effective for safeguarding nuclear material as these countries experience political and social changes. The MPC&A program is managed by DOE`s Russia/Newly Independent States (NIS) Nuclear Materials Security Task Force. A coordinated effort is underway to promote and to help establish a new safeguards culture and a sustaining infrastructure. Elements being implemented at both the national and site levels include system operational performance evaluations, development of MPC&A training, operational procedures, national MPC&A regulations, and adaptation of modern MPC&A methodologies to suit the conditions in the FSU countries. This paper identifies current efforts in several countries that are undergoing transition from near-term upgrades to sustainable MPC&A systems.
Modular Integrated Monitoring System (MIMS) - architecture and implementation
The MIMS is being developed as a cost-effective means of performing safeguards in unattended remote monitoring applications. Based on industry standards and an open systems approach, the MIMS architecture supports both data acquisition and data review subsystems. Data includes images as well as discrete and analog sensor outputs. The MIMS uses an Echelon LonWorks network as a standard means and method of data acquisition from the sensor. A common data base not only stores sensor and image data but also provides a structure by which dynamic changes to the sensor system can be reflected in the data acquisition and data review subsystems without affecting the execution software. The architecture includes standards for wide area communications between data acquisition systems and data review systems. Data authentication is provided as an integral part of the design. The MIMS software implements this architecture by combining the use of commercial applications with a set of custom 16 and 32 bit Microsoft Windows applications which are run under Windows NT and Windows 95 operating systems.
Technical results of Y-12/IAEA field trial of remote monitoring system
A Remote Monitoring System (RMS) field trial has been conducted with the International Atomic Energy Agency (IAEA) on highly enriched uranium materials in a vault at the Oak Ridge Y-12 Plant. The RMS included a variety of Sandia, Oak Ridge, and Aquila sensor technologies which provide containment seals, video monitoring, radiation asset measurements, and container identification data to the on-site DAS (Data Acquisition System) by way of radio-frequency and Echelon LonWorks networks. The accumulated safeguards information was transmitted to the IAEA via satellite (COMSAT/RSI) and international telephone lines. The technologies tested in the remote monitoring environment are the RadCouple, RadSiP, and SmartShelf sensors from the ORSENS (Oak Ridge Sensors for Enhancing Nuclear Safeguards) technologies; the AIMS (Authenticated Item Monitoring System) motion sensor (AMS), AIMS fiber-optic seal (AFOS), ICAM (Image Compression and Authentication Module) video surveillance system, DAS (Data Acquisition System), and DIRS (Data and Image Review Station) from Sandia; and the AssetLAN identification tag, VACOSS-S seal, and Gemini digital surveillance system from Aquila. The field trial was conducted from October 1996 through May 1997. Tests were conducted during the monthly IAEA Interim Inventory Verification (IIV) inspections for evaluation of the equipment. Experience gained through the field trials will allow the technologies to be applied to various monitoring scenarios.
Pulsed power performance of PBFA Z
PBFA Z is a new 60-TW/5-MJ electrical driver located at Sandia National Laboratories. The authors use PBFA Z to drive z pinches. The pulsed power design of PBFA Z is based on conventional single-pulse Marx generator, water-line pulse-forming technology used on the earlier Saturn and PBFA II accelerators. PBFA Z stores 11.4 MJ in its 36 Marx generators, couples 5 MJ in a 60-TW/105-ns pulse to the output water transmission lines, and delivers 3.0 MJ and 50 TW of electrical energy to the z-pinch load. Depending on the initial load inductance and the implosion time, the authors attain peak currents of 16-20 MA with a rise time of 105 ns. Current is fed to the z-pinch load through self magnetically-insulated transmission lines (MITLs). Peak electric fields in the MITLs exceed 2 MV/cm. The current from the four independent conical-disk MITLs is combined together in a double post-hole vacuum convolute with an efficiency greater than 95%. The authors achieved x-ray powers of 200 TW and x-ray energies of 1.9 MJ from tungsten wire-array z-pinch loads.
Seismic monitoring of the Yucca Mountain facility
Questions have arisen regarding the applicability of seismic sensors to detect mining (re-entry) with a tunnel boring machine (TBM). Unlike cut and blast techniques of mining which produce impulsive seismic signals, the TBM produces seismic signals which are of long duration. (There are well established techniques available for detecting and locating the sources of the impulsive signals.) The Yucca Mountain repository offered an opportunity to perform field evaluations of the capabilities of seismic sensors because during much of 1996, mining there was progressing with the use of a TBM. During the mining of the repository`s southern branch, an effort was designed to evaluate whether the TBM could be detected, identified and located using seismic sensors. Three data acquisition stations were established in the Yucca Mountain area to monitor the TBM activity. A ratio of short term average to long term average algorithm was developed for use in signal detection based on the characteristics shown in the time series. For location of the source of detected signals, FK analysis was used on the array data to estimate back azimuths. The back azimuth from the 3 component system was estimated from the horizontal components. Unique features in the timing of the seismic signal were used to identify the source as the TBM.
US remote monitoring operational experience
Under international partnerships and bilateral agreements with the U.S. Department of Energy, Sandia National Laboratories, other national laboratories, and international partner organizations have emplaced remote monitoring systems in nuclear facilities and laboratories in various parts of the world for the purpose of conducting field trials of remote monitoring. The purpose of the present report is to review the results from these field trials and draw general conclusions regarding the trials. Many thousands of hours of sensor and system operation have been logged, and data have been retrieved from many locations. In virtually all cases the system components have functioned as intended and data have been successfully collected and transmitted for review. Comparisons between front-end-triggered video and time-lapse video have shown that the triggered record has captured all relevant monitored operations at the various nuclear facilities included in the field trials. We believe the utility and functional reliability of remote monitoring for international safeguards has been shown. However, it should be kept in mind that openness and transparency, including some form of short-notice inspections, are likely to be prerequisites to the safeguards implementation of remote monitoring in any State.
Verification of operating software for cooperative monitoring applications
Monitoring agencies often use computer based equipment to control instruments and to collect data at sites that are being monitored under international safeguards or other cooperative monitoring agreements. In order for this data to be used as an independent verification of data supplied by the host at the facility, the software used must be trusted by the monitoring agency. The monitoring party must be sure that the software has not be altered to give results that could lead to erroneous conclusions about nuclear materials inventories or other operating conditions at the site. The host might also want to verify that the software being used is the software that has been previously inspected in order to be assured that only data that is allowed under the agreement is being collected. A description of a method to provide this verification using keyed has functions and how the proposed method overcomes possible vulnerabilities in methods currently in use such as loading the software from trusted disks is presented. The use of public key data authentication for this purpose is also discussed.
American-Russian remote monitoring transparency program accomplishments during the past year
Martinez, R.L.; Croessmann, D.; Sazhnev, M.
During the past year, Sandia National Laboratories and Kurchatov Institute have continued collaborations under the Remote Monitoring Transparency Program (RMTP). The emphasis has been on promoting the concept of remote monitoring within the Russian Federation along with some hands-on technical training of Kurchatov personnel. The program has progressed in the direction to include the participation of Kurchatov personnel in the promotion, design, and implementation of Remote Monitoring Systems (RMS). The program has evolved from a system that was completely designed and implemented by Sandia (system that is currently installed at the Kurchatov gas plant) to a functional demonstration RMS that was designed and implemented by Kurchatov personnel with guidance and assistance from Sandia. This paper will present a brief history on the remote monitoring collaborations between Sandia and Kurchatov with an emphasis on the activities/accomplishments of the past year. The major accomplishments include a Remote Monitoring Workshop in Moscow organized by Kurchatov; integration of Russian sensors into the existing gas plant system; feedback from Kurchatov on the operation of the existing system; a training course conducted by Echelon Corporation in Albuquerque for Kurchatov and Sandia developers on the sensor network technology currently utilized in remote monitoring applications; an International Remote Monitoring Project (IRMP) technical workshop in Albuquerque organized by Sandia on software tools and development that included the participation of Kurchatov personnel; the development of a functional lab-based RMS by Kurchatov utilizing current technology; and the development of a remote monitoring Web homepage at Kurchatov.
US - Russian government-to-government MPC&A upgrades at the institute of theoretical and experimental physics
Materials Protection, Control, and Accounting (MPC&A) upgrades have begun at the Institute of Theoretical and Experimental Physics (ITEP), a site that has significant quantities of direct-use nuclear materials. Cooperative work was initiated at this Moscow facility as a part of the U.S.-Russian Government-to-Government program to upgrade MPC&A systems. An initial site visit and assessment was conducted in September 1996 to establish communication between ITEP and the U.S. Department of Energy (DOE) and the participating U.S. national laboratories. Subsequently, the parties reached an agreement to develop two master plans for MPC&A upgrades. Los Alamos National Laboratory (LANL) and Oak Ridge National Laboratory (ORNL) would assist in developing a plan for Material Control and Accounting (MC&A) upgrades, and Sandia National Laboratories (SNL) would assist in developing a plan for Physical Protection (PP) upgrades. The MC&A plan included MC&A training, a mass measurement program, nondestructive assay instrumentation, item identification (bar coding), physical inventory taking, and a nuclear materials accounting system. The PP plan included basic PP system design training, Central Alarm Station (CAS) location and equipment upgrades, site and critical-building access control system, intrusion detection alarm assessment, and guard force communications.
Cooperative nonproliferation activities
Sandia National Laboratories (SNL) under DOE sponsorship is engaged in nuclear nonproliferation activities with the Power Reactor and Nuclear Fuel Development Corporation (PNC) of Japan. From 1995 to the present SNL and PNC have been participating in a cooperative project to implement and assess the use of remote monitoring to achieve nuclear nonproliferation objectives. Implementation of remote monitoring at the PNC Joyo facility took place during 1996 and continues to date. An International Fellowship began in the Fall of 1995 and has complemented the nonproliferation study. Plans are underway to extend the Fellowship and to upgrade the existing Remote Monitoring System to include another area at the Joyo facility. SNL and PNC are currently exploring the possibility of exchanging experts with the objective of promoting regional confidence building in Northeast Asia, possibly using some of the same remote monitoring technologies. This paper will provide an overview of these activities and report on the status of cooperative nonproliferation activities being conducted by PNC and SNL.
Barriers to creating a secure MPI
This paper explores some of the many issues in developing security enhanced MPI for embedded real-time systems supporting the Department of Defense`s Multi-level Security policy (DoD MLS) are presented along with the preliminary design for such an MPI variant. In addition some of the many issues that need to be addressed in creating security enhanced versions of MPI for other domains are discussed. 19 refs.
Summary of collaborative photovoltaic industry work to proactively improve codes and standards for photovoltaic power system applications
Several important milestones in codes and standards pertaining to the design, installation and operation of photovoltaic (PV) systems have recently been completed with collaboration of participants from all sectors of the PV industry, utilities and the US Department of Energy`s National Photovoltaic Program. Codes and standards that have been proposed, written or modified include changes and additions for the 1999 National Electrical Code{reg_sign} (NEC{reg_sign}), standards for fire and personnel safety, system testing, component qualification, and utility interconnect. Project authorization requests with the Institute of Electrical and Electronic Engineers (IEEE) have resulted in standards for listing PV modules and balance-of-system components. Industry collaboration with Underwriter Laboratories, Inc. (UL), with the American Society for Testing and Materials (ASTM), and through critical input and review for international standards with the International Electrotechnical Commission (IEC) have resulted in domestic and international standards for PV. Work related to the codes and standards activities through the International Energy Agency (IEA) is also being supported by the PV industry and the US DOE. This paper will concentrate on and summarize the important new NEC proposals for PV systems and will also describe and show the bonds between the activities in other standards writing activities. The paper will also provide an analysis of changes and resulting impacts of selected proposed NEC changes on PV designs, installations and performance.
Augmented Computer Exercise for Inspection Training (ACE-IT) - an interactive training tool for {open_quotes}challenge inspections{close_quotes} under the chemical weapons convention
The on-site inspection provisions in many current and proposed arms control agreements require extensive preparation and training on the part of both the Inspection Teams and the Inspected Parties. Current training techniques include lectures, table-top inspections, and practice inspections. The Augmented Computer Exercise for Inspection Training (ACE-IT), an interactive computer training tool, increases the utility of table-top inspections. Under the Chemical Weapons Convention (CWC) challenge inspections are short-notice inspections that may occur anywhere, anytime, and with no right of refusal. The time interval between notice of intent to inspect a facility and the arrival of inspectors at the facility may be as short as 72 hours. Therefore, advance training is important. ACE-IT is used for training both the Inspection Team (inspector) and the Inspected Party (host) to conduct a hypothetical challenge inspection under the CWC. An exercise moderator controls the exercise. The training covers all of the events in the challenge inspection regime, from initial notification of an inspection through post-inspection activities. But the primary emphasis of the training tool is on conducting the inspection itself, and in particular, the concept of managed access. Managed access is used to assure the inspectors that the facility is in compliance with the CWC, while protecting sensitive information that is not related to the CWC.
Final disposal room structural response calculations
Butcher, Barry M.
Finite element calculations have been performed to determine the structural response of waste-filled disposal rooms at the WIPP for a period of 10,000 years after emplacement of the waste. The calculations were performed to generate the porosity surface data for the final set of compliance calculations. The most recent reference data for the stratigraphy, waste characterization, gas generation potential, and nonlinear material response have been brought together for this final set of calculations.
Containment and surveillance -- A principle IAEA safeguards measure
In October 1954, the Statue of the IAEA (International Atomic Energy Agency) had been signed by 70 nations. The Agency was established in 1957, and at the end of its first year of operation 130 professionals were employed in all departments. By the end of 1990, the number of professionals in the Safeguards Department had increased to over 270, over 200 of whom are designated inspectors. One of the unique features of the IAEA which directly interfaces with Member States is that of on-site inspections by international officials of the IAEA. This growth cycle, spanning some 40 years, has produced a variety of interesting subjects (legal, technical, political, etc.) for recollection, discussion, and study. This paper addresses the specific subject of technical means to maintain continuity of knowledge between inspection intervals--classically referred to as Containment and Surveillance.
Potential cooperative measures on nuclear issues in Asia
Cooperation on nuclear issues is receiving increased attention in Asia. In Northeast Asia, where the nuclear industry is well-developed, cooperation in the back end of the nuclear fuel cycle could help deal with issues such as disposition of spent fuel and long term storage options. In Southeast Asia, where countries are just beginning to introduce nuclear energy, cooperation would be useful in developing standards for the nuclear industry. Throughout Asia, nuclear research and power activities can raise concerns about safety, environmental pollution and proliferation. The sharing of relevant information, i.e. cooperative monitoring, will be essential to addressing these issues. In fact, a number of regional interactions on nuclear issues are already occurring. These range from training exchanges sponsored by the more advanced states to participation in environmental monitoring of the East Sea (Sea of Japan). Several states are considering sharing information from their nuclear facilities; some exchanges of radiation data are already in place. The KEDO reactor project will involve close working relations between the nuclear experts of South Korea, North Korea, Japan, and the US. Areas for further regional cooperation are discussed.
Modeling an optical micromachine probe
Silicon micromachines are fabricated using Surface Micro-Machining (SMM) techniques. Silicon micromachines include engines that consist of orthogonally oriented linear comb drive actuators mechanically connected to a rotating gear. These gears are as small a 50-{micro}m in diameter and can be driven at rotation rates exceeding 300,000-rpm. Measuring and analyzing microengine performance is basic to micromachine development and system applications. Optical techniques offer the potential for measuring long term statistical performance data and transient responses needed to optimize designs and manufacturing techniques. The authors describe the modeling of an optical probe developed at Sandia National Laboratories. Experimental data will be compared with output from the model.
Beyond pretty pictures: Quantifying porous media properties and transport processes using transmission and emission CT
While gaining increasing interest, the use of Computerized Tomography (CT) in porous media studies has been limited by the availability of quantitative methods of analysis. Three methods are presented for the analysis of CT data and applied to images obtained from gamma transmission and gamma emission systems. The first utilizes measurement statistics and image histograms to provide exact estimates of multiple component volume contents. An improved thresholding technique in the second method allows an identification of individual voxel composition. The threshold utilizes error statistics to eliminate the arbitrary nature of current methods. Emission tomography images of solute transport are shown in the third procedure to provide in-situ measures of transport in fractured media. Application of each method is demonstrated on samples of the Culebra Dolomite of the Rustler Formation, New Mexico. Dolomite cores were collected by horizontal drilling at a depth of 218 m in the air intake shaft of the Waste Isolation Pilot Plant located near Carlsbad, New Mexico.
VSHOT measurement uncertainty and sensitivity study
The Video Scanning Hartmann Optical Tester (VSHOT) is a slope-measuring tool for large, imprecise reflectors. It is a laser ray trace device developed to measure the optical quality of point-focus solar concentrating mirrors. A unique tool was needed because of the diverse geometry and very large size of solar concentrators, plus their large optical errors. To study the accuracy of VSHOT as well as its sensitivity to changes in test setup variables, a series of experiments were performed with a very precise, astronomical-grade mirror. The slope errors of the reference mirror were much smaller than the resolution of the VSHOT, so that any measured slope errors were caused by the instrument itself rather than the mirror. The VSHOT exceeded its accuracy goals by achieving about {+-}0.5% (68% confidence) error in the determination of focal length and {+-} 0.1 mrad (68% confidence) error in the determination of RMS slope error. Displacement of the test mirror from the optical axis caused the largest source of measured errors.
Virtual Tower
The primary responsibility of an intrusion detection system (IDS) operator is to monitor the system, assess alarms, and summon and coordinate the response team when a threat is acknowledged. The tools currently provided to the operator are somewhat limited: monitors must be switched, keystrokes must be entered to call up intrusion sensor data, and communication with the response force must be maintained. The Virtual tower is an operator interface assembled from low-cost commercial-off-the-shelf hardware and software; it enables large amounts of data to be displayed in a virtual manner that provides instant recognition for the operator and increases assessment accuracy in alarm annunciator and control systems. This is accomplished by correlating and fusing the data into a 360-degree visual representation that employs color, auxiliary attributes, video, and directional audio to prompt the operator. The Virtual Tower would be a valuable low-cost enhancement to existing systems.
An introduction to the architectural surety program
This paper provides a summary introduction to the nationally emerging area of Architectural and Infrastructure Surety that is under development at Sandia National Laboratories. This program area, addressing technology requirements at the national level, includes four major elements: education, research, development, and application. It involves a risk management approach to solving problems of the as-built environment through the application of security, safety, and reliability principles developed in the nuclear weapons programs of the Department of Energy. The changing responsibilities of engineering design professionals is addressed in light of the increased public awareness of structural and facility systems vulnerabilities to malevolent, normal, and abnormal environment threats. A brief discussion is presented of the education and technology outreach programs initiated through an infrastructure surety graduate Civil Engineering Department course taught at the University of New Mexico and through the architectural surety workshops and conferences already held and planned for the future. A summary description is also presented of selected technologies with strong potential for application to specific national architectural and infrastructure surety concerns. These technologies include super-computational modeling and structural simulations, window glass fragmentation modeling, risk management procedures, instrumentation and health monitoring systems, and three-dimensional CAD virtual reality visualization techniques.
Application of spatial and angular domain based parallelism to a discrete ordinates formulation with unstructured spatial discretization
A parallel discrete ordinate formulation employing a general, unstructured finite element spatial discretization is presented for steady, gray, nonscattering radiative heat transport within a participating medium. The formulation is based on the first order form of the boltzmann transport equation and allows for any combination of spatial and angular domain based parallelism. The formulation is tested on a massively parallel, distributed memory architecture using a standard three-dimensional benchmark calculation. The results show that the formulation presented provides better parallel performance and accuracy than the author`s previously published work. The ultimate objective of both the current and previous efforts is to develop a computationally efficient radiative transport model for use in large scale numerical fire simulations.
Risk management for buildings -- Has the time come?
There are both incentives and challenges for applying formal risk management processes to buildings and other structures, including bridges, highways, dams, stadiums, shopping centers, and private dwellings. Based on an assessment of several issues, the authors conclude that for certain types of buildings and structures the time has come for the use of a formal risk-management approach, including probabilistic risk assessment methods, to help identify dominant risks to public health, safety, and security and to help manage these risks in a cost-effective manner.
A thin-foil Faraday collector as a radiation-hard, high fluence charged particle spectrometer
The authors have developed a radiation-hard, charged particle spectrometer, consisting of thin parallel conducting foils as current collectors. Prototype detectors have been tested in accelerator bombardments and at the fusion plasma facilities TFTR and JET. In the case of the accelerator bombardments, a detector consisting of 6 Al foils, each of thickness about 6 {micro}m, demonstrated an energy resolution of about 7% for 7 MeV alpha particles. The prototype tested immediately outside TFTR demonstrated the expected insensitivity to moderately high levels of fast neutrons and hard gamma rays. The prototype tested inside JET similarly indicated operational capability at elevated temperatures as a lost alpha particle detector for d-t tokamak fusion plasmas. The robustness and moderately good energy resolution of these detectors should permit the application to tasks such as the first wall measurement of lost alpha particles from tokamak fusion plasmas, the real time measurement of light ion fission fragments from fission reactor experiments and the in-beam measurement of accelerator beam energies as a control diagnostic.
Contents and structure of the SME digital signature buffer
This contribution proposes additional text for Section 7.1.5.5 of [1] which defines the contents of the digital signature buffer for each relevant flow in the Two-Way and Three-Way Security Message Exchange Protocols. This is clearly an interoperability issue because these signature buffers must be constructed identically at the sender (signature generator) and receiver (signature validator) in order for the protocols to proceed correctly. Sections 2 and 3 of this contribution are intended to be placed in Section 7.1.5.5 of [1]. In addition, text is proposed in Motion 2 of Section 4 of this contribution which clarifies the scope of encryption of the Confidential Section, which is defined in Section 7.1.4 of [1].
An information model based weld schedule database
As part of a computerized system (SmartWeld) developed at Sandia National Laboratories to facilitate agile manufacturing of welded assemblies, a weld schedule database (WSDB) was also developed. SmartWeld`s overall goals are to shorten the design-to-product time frame and to promote right-the-first-time weldment design and manufacture by providing welding process selection guidance to component designers. The associated WSDB evolved into a substantial subproject by itself. At first, it was thought that the database would store perhaps 50 parameters about a weld schedule. This was a woeful underestimate: the current WSDB has over 500 parameters defined in 73 tables. This includes data bout the weld, the piece parts involved, the piece part geometry, and great detail about the schedule and intervals involved in performing the weld. This complex database was built using information modeling techniques. Information modeling is a process that creates a model of objects and their roles for a given domain (i.e. welding). The Natural-Language Information Analysis methodology (NIAM) technique was used, which is characterized by: (1) elementary facts being stated in natural language by the welding expert, (2) determinism (the resulting model is provably repeatable, i.e. it gives the same answer every time), and (3) extensibility (the model can be added to without changing existing structure). The information model produced a highly normalized relational schema that was translated to Oracle{trademark} Relational Database Management Systems for implementation.
Equilibrium characteristics of tartrate and EDTA-based electroless copper deposition baths
Electroless deposition of copper is being used for a variety of applications, one of them being the development of seed metallic layers on non-metals, which are widely used in electronic circuitry. Solution equilibrium characteristics of two electroless copper baths containing EDTA and tartrate as the complexing agents were studied as functions of pH, chelating agent and metal ion concentrations. Equilibrium diagrams were constructed for both cu-tartrate and Cu-EDTA systems. It was determined that copper is chiefly complexed as Cu(OH){sub 2}L{sub 2}{sup {minus}4} in the tartrate bath, and as CuA{sup {minus}2} in the EDTA bath, where L and A are the complexing tartrate and EDTA ligands, respectively. The operating ranges for electroless copper deposition were identified for both baths. Dependence of Cu(OH){sub 2} precipitation on the pH and species concentrations was also studied for these systems.
A plasma process monitor/control system
Sandia National Laboratories has developed a system to monitor plasma processes for control of industrial applications. The system is designed to act as a fully automated, sand-alone process monitor during printed wiring board and semiconductor production runs. The monitor routinely performs data collection, analysis, process identification, and error detection/correction without the need for human intervention. The monitor can also be used in research mode to allow process engineers to gather additional information about plasma processes. The plasma monitor can perform real-time control of support systems known to influence plasma behavior. The monitor can also signal personnel to modify plasma parameters when the system is operating outside of desired specifications and requires human assistance. A notification protocol can be selected for conditions detected in the plasma process. The Plasma Process Monitor/Control System consists of a computer running software developed by Sandia National Laboratories, a commercially available spectrophotometer equipped with a charge-coupled device camera, an input/output device, and a fiber optic cable.
Architectural design for reliability
Design-for-reliability concepts can be applied to the products of the construction industry, which includes buildings, bridges, transportation systems, dams, and other structures. The application of a systems approach to designing in reliability emphasizes the importance of incorporating uncertainty in the analyses, the benefits of optimization analyses, and the importance of integrating reliability, safety, and security. 4 refs., 3 figs.
On angularly perturbed Laplace equations in the unit ball of IR{sup n+2} and their distributional boundary values
Massopust, P.R.
All solutions of an in its angular coordinates continuously perturbed Laplace-Beltrami equation in the open unit ball IB{sup n+2} {contained_in} IR{sup n+2}, n {ge} 1, are characterized. Moreover, it is shown that such pertubations yield distributional boundary values which are different from, but algebraically and topologically equivalent to, the hyperfunctions of Lions & Magenes. This is different from the case of radially perturbed Laplace-Beltrami operators (cf. [7]) where one has stability of distributional boundary values under such perturbations.
Activity-based costing of security services for a Department of Energy nuclear site
Department of Energy (DOE) nuclear facilities are being encouraged to reduce costs but the accounting data typically in use by the financial organizations at these laboratories cannot easily be used to determine which security activities offer the best reduction in cost. For example, labor costs have historically been aggregated over various activities, making it difficult to determine the true costs of performing each activity. To illustrate how this problem can be solved, a study was performed applying activity-based costing (ABC) to a hypothetical DOE facility. ABC is a type of cost-accounting developed expressly to determine truer costs of company activities. The hypothetical facility was defined to have features similar to those found across the DOE nuclear complex. ABC traced costs for three major security functions - Protective Force Operations, Material Control and Accountability, and Technical Security - to various activities. Once these costs had been allocated, we compared the cost of three fictitious upgrades: (1) an improvement in training or weapons that allows the protective force to have better capabilities instead of adding more response forces; (2) a change in the frequency of inventories; and (3) a reduction in the annual frequencies of perimeter sensor tests.
Evaluation of a prototype infrasound system
Breding, D.
Under Department of Energy sponsorship, Sandia National Laboratories and Los Alamos National Laboratory cooperated to develop a prototype infrasonic array, with associated documentation, that could be used as part of the International Monitoring System. The United States Government or foreign countries could procure commercially available systems based on this prototype to fulfill their Comprehensive Test Ban Treaty (CTBT) obligations. The prototype is a four-element array in a triangular layout as recommended in CD/NTB/WP.224 with an element at each corner and one in the center. The prototype test configuration utilize an array spacing of 1 km. The prototype infrasound system has the following objectives: (1) Provide a prototype that reliably acquires and transmits near real-time infrasonic data to facilitate the rapid location and identification of atmospheric events. (2) Provide documentation that could be used by the United States and foreign countries to procure infrasound systems commercially to fulfill their CTBT responsibilities. Infrasonic monitoring is an effective, low cost technology for detecting atmospheric explosions. The low frequency components of explosion signals propagate to long ranges (few thousand kilometers) where they can be detected with an array of sensors. Los Alamos National Laboratory`s expertise in infrasound systems and phenomenology when combined with Sandia`s expertise in providing verification quality system for treaty monitoring make an excellent team to provide the prototype infrasound sensor system. By September 1997, the prototype infrasound system will have been procured, integrated, evaluated and documented. Final documentation will include a system requirements document, an evaluation report and a hardware design document. The hardware design document will describe the various hardware components used in the infrasound prototype and their interrelationships.
Oxidation in HVOF-sprayed steel
It is widely held that most of the oxidation in thermally sprayed coatings occurs on the surface of the droplet after it has flattened. The evidence in this paper suggests that, for the conditions studied here, oxidation of the top surface of flattened droplets is not the dominant oxidation mechanism. In this study, a mild steel wire (AISI 1025) was sprayed using a high-velocity oxy-fuel (HVOF) torch onto copper and aluminum substrates. Ion milling and Auger spectroscopy were used to examine the distribution of oxides within individual splats. Conventional metallographic analysis was also used to study oxide distributions within coatings that were sprayed under the same conditions. An analytical model for oxidation of the exposed surface of a splat is presented. Based on literature data, the model assumes that diffusion of iron through a solid FeO layer is the rate limiting factor in forming the oxide on the top surface of a splat. An FeO layer only a few thousandths of a micron thick is predicted to form on the splat surface as it cools. However, the experimental evidence shows that the oxide layers are typically 100x thicker than the predicted value. These thick, oxide layers are not always observed on the top surface of a splat. Indeed, in some instances the oxide layer is on the bottom, and the metal is on the top. The observed oxide distributions are more consistently explained if most of the oxide formed before the droplets impact the substrate.
Travel-time correction surface generation for the DOE Knowledge Base
The DOE Knowledge Base data storage and access model consists of three parts: raw data processing, intermediate surface generation, and final output surface interpolation. The paper concentrates on the second step, surface generation, specifically applied to travel-time correction data. The surface generation for the intermediate step is accomplished using a modified kriging solution that provides robust error estimates for each for each interpolated point and satisfies many important physical requirements including differing quality data points, user-definable range of influence for each point, blend to background values for both interpolated values and error estimates beyond the ranges, and the ability to account for the effects of geologic region boundaries. These requirements are outlined and discussed and are linked to requirements specified for the final output model in the DOE Knowledge Base. Future work will focus on testing the entire Knowledge Base model using the regional calibration data sets which are being gathered by researchers at Los Alamos and Lawrence Livermore National Laboratories.
Visualization tools for comprehensive test ban treaty research
Edwards, T.L.
This paper focuses on tools used in Data Visualization efforts at Sandia National Laboratories under the Department of Energy CTBT R&D program. These tools provide interactive techniques for the examination and interpretation of scientific data, and can be used for many types of CTBT research and development projects. We will discuss the benefits and drawbacks of using the tools to display and analyze CTBT scientific data. While the tools may be used for everyday applications, our discussion will focus on the use of these tools for visualization of data used in research and verification of new theories. Our examples focus on uses with seismic data, but the tools may also be used for other types of data sets. 5 refs., 6 figs., 1 tab.
The software engineering journey: From a naieve past into a responsible future
Fitzpatrick-Fletcher, Sharon K.
All engineering fields experience growth, from early trial & error approaches, to disciplined approaches based on fundamental understanding. The field of software engineering is making the long and arduous journey, accomplished by evolution of thinking in many dimensions. This paper takes the reader along a trio of simultaneous evolutionary paths. First, the reader experiences evolution from a zero-risk mindset to a managed-risk mindset. Along this path, the reader observes three generations of security risk management and their implications for software system assurance. Next is a growth path from separate surety disciplines to an integrated systems surety approach. On the way, the reader visits safety, security, and dependability disciplines and peers into a future vision which coalesces them. The third and final evolutionary path explored here transitions the software engineering field from best practices to fundamental understanding. Along this road, the reader observes a framework for developing a {open_quotes}science behind the engineering{close_quotes}, and methodologies for software surety analysis.
A summary of the GPS system performance for STARS Mission 3
This paper describes the performance of the GPS system on the most recent flight of the STARS missile, STARS Mission 3 (M3). This mission was conducted under the Ballistic Missile Defense Organization`s (BMDO`s) Consolidated Targets Program. The United States Army Space and Strategic Defense Command (USASSDC) is the executing agent for this mission and the Department of Energy`s (DOE`s) Sandia National Laboratories (SNL) is the vehicle developer and integrator. The M3 flight, dually designated as the MSX Dedicated Targets II (MDT-II) mission occurred on August 31, 1996. This mission was conducted for the specific purpose of providing targets for viewing by the MSX satellite. STARS M3 was the first STARS flight to use GPS-derived data for missile guidance, and proved to be instrumental in the procurement of a wealth of experimental data which is still undergoing analysis by numerous scientific agencies within the BMDO complex. GPS accuracy was required for this mission because of the prescribed targeting requirements for the MDT-II payload deliveries with respect to the MSX satellite flight path. During the flight test real time GPS-derived state vector data was also used to generate pointing angles for various down range sensors involved in the experiment. Background information describing the STARS missile, GPS subsystem architecture, and the GPS Kalman filter design is presented first, followed by a discussion of the telemetry data records obtained from this flight with interpretations and conclusions.
The data dictionary: A view into the CTBT knowledge base
Shepherd, E.R.; Keyser, R.G.; Armstrong, H.M.
The data dictionary for the Comprehensive Test Ban Treaty (CTBT) knowledge base provides a comprehensive, current catalog of the projected contents of the knowledge base. It is written from a data definition view of the knowledge base and therefore organizes information in a fashion that allows logical storage within the computer. The data dictionary introduces two organization categories of data: the datatype, which is a broad, high-level category of data, and the dataset, which is a specific instance of a datatype. The knowledge base, and thus the data dictionary, consist of a fixed, relatively small number of datatypes, but new datasets are expected to be added on a regular basis. The data dictionary is a tangible result of the design effort for the knowledge base and is intended to be used by anyone who accesses the knowledge base for any purpose, such as populating the knowledge base with data, or accessing the data for use with automatic data processing (ADP) routines, or browsing through the data for verification purposes. For these two reasons, it is important to discuss the development of the data dictionary as well as to describe its contents to better understand its usefulness; that is the purpose of this paper.
Testing the waveform correlation event detection system: Teleseismic, regional, and local distances
Waveform Correlation Event Detection System (WCEDS) prototypes have now been developed for both global and regional networks and the authors have extensively tested them to assess the potential usefulness of this technology for CTBT (Comprehensive Test Ban Treaty) monitoring. In this paper they present the results of tests on data sets from the IDC (International Data Center) Primary Network and the New Mexico Tech Seismic Network. The data sets span a variety of event types and noise conditions. The results are encouraging at both scales but show particular promise for regional networks. The global system was developed at Sandia Labs and has been tested on data from the IDC Primary Network. The authors have found that for this network the system does not perform at acceptable levels for either detection or location unless directional information (azimuth and slowness) is used. By incorporating directional information, however, both areas can be improved substantially suggesting that WCEDS may be able to offer a global detection capability which could complement that provided by the GA (Global Association) system in use at the IDC and USNDC (United States National Data Center). The local version of WCEDS (LWCEDS) has been developed and tested at New Mexico Tech using data from the New Mexico Tech Seismic Network (NMTSN). Results indicate that the WCEDS technology works well at this scale, despite the fact that the present implementation of LWCEDS does not use directional information. The NMTSN data set is a good test bed for the development of LWCEDS because of a typically large number of observed local phases and near network-wide recording of most local and regional events. Detection levels approach those of trained analysts, and locations are within 3 km of manually determined locations for local events.
Software design and operational model for the WCEDS prototype
To explore the potential of waveform correlation for CTBT, the Waveform Correlation Event Detection System (WCEDS) prototype was developed. The WCEDS software design followed the Object Modeling Technique process of analysis, system design, and detailed design and implementation. Several related executable programs are managed through a Graphical User Interface (GUI). The WCEDS prototype operates in an IDC/NDC-compatible environment. It employs a CSS 3.0 database as its primary input/output interface, reading in raw waveforms at the start, and storing origins, events, arrivals, and associations at the finish. Additional output includes correlation results and data for specified testcase origins, and correlation timelines for specified locations. During the software design process, the more general seismic monitoring functionality was extracted from WCEDS-specific requirements and developed into C++ object-oriented libraries. These include the master image, grid, basic seismic, and extended seismic libraries. Existing NDC and commercial libraries were incorporated into the prototype where appropriate, to focus development activities on new capability. The WCEDS-specific application code was built in a separate layer on top of the general seismic libraries. The general seismic libraries developed for the WCEDS prototype can provide a base for other algorithm development projects.
Magnetically-excited flexural plate wave resonator
A flexural plate wave (FPW) resonator was constructed by patterning current lines on a silicon nitride membrane suspended on a rectangular silicon frame. Eigenmodes of the rectangular membrane were excited using Lorentz forces generated between alternating surface currents and a static in-plane magnetic field. The magnetic field strength required for these devices can be achieved with small permanent magnets ({approx} 1 cm{sup 3}). Preferential coupling to a particular membrane mode was achieved by positioning current lines along longitudinal mode antinodes. An equivalent-circuit model was derived that characterizes the input impedance of a one-port device and the transmission response of a two-port device over a range of frequencies near a single membrane resonance. Experiments were performed to characterize the effects of varying magnetic field, ambient gas, gas pressure, and input power. To the authors` knowledge, this is the first experimental demonstration of a resonant FPW device.
Solidification modeling of Nb bearing superalloys
The solidification behavior of experimental Ni base and Fe base superalloys containing Nb, Si, and C was studied using differential thermal analysis (DTA) and microstructural characterization techniques. The solidification reaction sequences responsible for microstructural development were found to be similar to those expected in the Ni-Nb-C ternary system, where the solute-rich interdendritic liquid exhibited two eutectic-type reactions at the terminal stages of solidification: L {yields} ({gamma} + NbC) and L {yields} ({gamma} + Laves). A pseudo ternary {gamma}-Nb-C approach was developed to provide a quantitative description of solidification behavior for these experimental alloys. Solute redistribution calculations in the model are based on a previous approach developed by Mehrabian and Flemings, with modifications made to account for the high diffusion rate of C in the solid. Solidification parameters for Nb and C were determined through DTA and electron probe microanalysis techniques and used as inputs to the model. Reasonable agreement is found between calculated volume fractions of the {gamma}/NbC and {gamma}/Laves constituents and those measured experimentally. The modeling results permit detailed descriptions of the relation between alloy composition and microstructural evolution during solidification.
Data analysis for remote monitoring of safeguarded facilities
The International Remote Monitoring Project (IRMP) sponsored by the US DOE allows DOE and its international partners to gain experience with the remote collection, transmission, and interpretation of safeguards-relevant data. This paper focuses on the interpretation of the data from these remote monitoring systems. Users of these systems need to be able to ascertain that the remote monitoring system is functioning as expected and that the events generated by the sensors are consistent with declared activity. The initial set of analytical tools being provided for IRMP installations this year include a suite of automatically generated views of user-selected data. The baseline set of tools, with illustrative examples, will be discussed. Plans for near-term enhancements will also be discussed. Finally, the applicability of more advanced analytical techniques such as expert systems will be discussed.
Low-level radioactive waste transportation safety history
Mcclure, J.D.
The Radioactive Materials Incident Report (RMIR) database was developed fin 1981 at the Transportation Technology Center of Sandia National Laboratories to support its research and development activities for the US department of Energy (DOE). This database contains information about radioactive material (RAM) transportation incidents that have occurred in the US since 1971. These data were drawn from the US Department of Transportation`s (DOT) Hazardous Materials Incident Report system, from Nuclear Regulatory Commission (NRC) files, and from various agencies including state radiological control offices. Support for the RMIR data base is funded by the US DOE National Transportation Program (NTP). Transportation events in RMIR are classified in one of the following ways: as a transportation accident, as a handling accident, or as a reported incident. This presentation will provide definitions for these classifications and give examples of each. The primary objective of this presentation is to provide information on nuclear materials transportation accident/incident events involving low-level waste (LLW) that have occurred in the US for the period 1971 through 1996. Among the areas to be examined are: transportation accidents by mode, package response during accidents, and an examination of accidents where release of contents has occurred. Where information is available, accident and incident history and package response for LLW packages in transportation accidents will be described.
Alumina strength degradation in the elastic regime
Measurements of Kanel et. al. [1991] have suggested that deviatoric stresses in glasses shocked to nearly the Hugoniot Elastic limit (HEL) relax over a time span of microseconds after initial loading. Failure (damage) waves have been inferred on the basis of these measurements using time-resolved manganin normal and transverse stress gauges. Additional experiments on glass by other researchers, using time-resolved gauges, high-speed photography and spall strength determinations have also lead to the same conclusions. In the present study the authors have conducted transmitted-wave experiments on high-quality Coors AD995 alumina shocked to roughly 5 and 7 GPa (just below or at the HEL). The material is subsequently reshocked to just above its elastic limit. Results of these experiments do show some evidence of strength degradation in the elastic regime.
Use of z-pinch sources for high-pressure shock wave experiments
Konrad, C.H.; Trott, W.M.; Hall, C.A.
Recent developments have demonstrated the use of pulsed power for producing intense radiation sources (z-pinches) that can drive planar shock waves in samples with spatial dimensions significantly larger than possible with other radiation sources. In this paper, the authors will discuss the use of z-pinch sources for shock wave studies at multi-Mbar pressures. Experimental plans to use the technique for absolute shock Hugoniot measurements and with accuracies comparable to that obtained with gun launchers are discussed.
D-dot and B-dot monitors for Z-vacuum-section power-flow measurements
The 36-module Z accelerator--designed to drive z-pinch loads at currents up to 20 MA--is contained in a 33-m-diameter tank with oil, water, and vacuum sections. The peak total forward-going power in the 36 water-section bi-plate transmission lines is approximately 63 TW. nine transmission lines deliver power to each of the four vacuum-section levels (referred to as levels A (the uppermost), B, C, and D). New differential D-dot and B-dot monitors were developed for the Z vacuum section. The D-dots measure voltage at the insulator stack. The B-dots measure current at the stack and in the outer magnetically-insulated transmission lines. Each monitor has two outputs that allow common-mode noise to be canceled to first order. The differential D-dot has one signal and one noise channel; the differential B-dot has two signal channels with opposite polarities. Each of the two B-dot sensors in the differential B-dot monitor has four 3-mm-diameter loops and is encased in copper to reduce flux penetration. For both types of probes, two 2.2-mm-diameter coaxial-cables connect the outputs to a Prodyn balun for common-mode-noise rejection. The cables provide reasonable bandwidth and generate acceptable levels of Compton drive in Z`s bremsstrahlung field. A new cavity B-dot is being developed to measure the total Z current 4.3 cm from the axis of the z-pinch load. All of the sensors are calibrated with 2--4% accuracy. The monitor signals are reduced with Barth or Weinschel attenuators, recorded on Tektronix 0.5-ns/sample digitizing oscilloscopes, and software cable compensated and integrated.
Design and performance of the Z magnetically-insulated transmission lines
The 36-module Z accelerator was designed to drive z-pinch loads for weapon-physics and inertial-confinement-fusion experiments, and to serve as a testing facility for pulsed-power research required to develop higher-current drivers. The authors have designed and tested a 10-nH 1.5-m-radius vacuum section for the Z accelerator. The vacuum section consists of four vacuum flares, four conical 1.3-m-radius magnetically-insulated transmission lines, a 7.6-cm-radius 12-post double-post-hole convolute which connects the four outer MITLs in parallel, and a 5-cm-long inner MITL which connects the output of the convolute to a z-pinch load. IVORY and ELECTRO calculations were performed to minimize the inductance of the vacuum flares with the constraint that there be no significant electron emission from the insulator-stack grading rings. Iterative TLCODE calculations were performed to minimize the inductance of the outer MITLs with the constraint that the MITL electron-flow-current fraction be {le} 7% at peak current. The TLCODE simulations assume a 2.5 cm/{micro}s MITL-cathode-plasma expansion velocity. The design limits the electron dose to the outer-MITL anodes to 50 J/g to prevent the formation of an anode plasma. The TLCODE results were confirmed by SCREAMER, TRIFL, TWOQUICK, IVORY, and LASNEX simulations. For the TLCODE, SCREAMER, and TRIFL calculations, the authors assume that after magnetic insulation is established, the electron-flow current launched in the outer MITLs is lost at the convolute. This assumption has been validated by 3-D QUICKSILVER simulations for load impedances {le} 0.36 ohms. LASNEX calculations suggest that ohmic resistance of the pinch and conduction-current-induced energy loss to the MITL electrodes can be neglected in Z power-flow modeling that is accurate to first order. To date, the Z vacuum section has been tested on 100 shots. They have demonstrated they can deliver a 100-ns rise-time 20-MA current pulse to the baseline z-pinch load.
Application of reactors for testing neutron-induced upsets in commercial SRAMs
Reactor neutron environments can be used to test/screen the sensitivity of unhardened commercial SRAMs to low-LET neutron-induced upset. Tests indicate both thermal/epithermal (< 1 keV) and fast neutrons can cause upsets in unhardened parts. Measured upset rates in reactor environments can be used to model the upset rate for arbitrary neutron spectra.
Areal array jetting device for ball grid arrays
Frear, D.R.
Package designs for microelectronics devices have moved from through-hole to surface mount technology in order to increase the printed wiring board real estate available by utilizing both sides of the board. The traditional geometry for surface mount devices is peripheral arrays where the leads are on the edges of the device. As the technology drives towards high input/output (I/O) count (increasing number of leads) and smaller packages with finer pitch (less distance between peripheral leads), limitations on peripheral surface mount devices arise. A solution to the peripheral surface mount issue is to shift the leads to the area under the device. This scheme is called areal array packaging and is exemplified by the ball grid array (BGA) package. In a BGA package, the leads are on the bottom surface of the package in the form of an array of solder balls. The current practice of joining BGA packages to printed wiring boards involves a hierarchy of solder alloy compositions. A high melting temperature ball is typically used for standoff. A promising alternative to current methods is the use of jetting technology to perform monolithic solder ball attachment. This paper describes an areal array jetter that was designed and built to simultaneously jet arrays of solder balls directly onto BGA substrates.
Application & testing of high temperature materials for solenoid coils
Sandia National Laboratories has designed and proven-in two new Solenoid coils for a highly-reliable electromechanical switch. Mil-Spec Magnetics Inc., Walnut CA manufactured the coils. The new design utilizes two new materials: Liquid Crystal Polymer (Vectra C130) for the bobbin and Thermal Barrier Silicone (VI-SIL V-658) for the encapsulant. The use of these two new materials solved most of the manufacturing problems inherent in the old Sandia design. The coils are easier to precision wind and more robust for handling, testing, and storage. The coils have some unique weapon related safety requirements. The most severe of these requirements is the 400{degrees}C, 1600 V test. The coils must not, and did not, produce any outgassing products to affect the voltage breakdown between contacts in the switch at these temperatures and voltages. Actual coils in switches were tested under these conditions. This paper covers the prove-in of this new coil design.
Active chatter control in a milling machine
The use of active feedback compensation to mitigate cutting instabilities in an advanced milling machine is discussed in this paper. A linear structural model delineating dynamics significant to the onset of cutting instabilities was combined with a nonlinear cutting model to form a dynamic depiction of an existing milling machine. The model was validated with experimental data. Modifications made to an existing machine model were used to predict alterations in dynamics due to the integration of active feedback compensation. From simulations, subcomponent requirements were evaluated and cutting enhancements were predicted. Active compensation was shown to enable more than double the metal removal rate over conventional milling machines. 25 refs., 10 figs., 1 tab.
Copper in silicon: Quantitative analysis of internal and proximity gettering
Mchugo, S.A.; Flink, C.; Weber, E.R.
The behavior of copper in the presence of a proximity gettering mechanism and a standard internal gettering mechanism in silicon was studied. He implantation-induced cavities in the near surface region were used as a proximity gettering mechanism and oxygen precipitates in the bulk of the material provided internal gettering sites. Moderate levels of copper contamination were introduced by ion implantation such that the copper was not supersaturated during the anneals, thus providing realistic copper contamination/gettering conditions. Copper concentrations at cavities and internal gettering sites were quantitatively measured after the annealings. In this manner, the gettering effectiveness of cavities was measured when in direct competition with internal gettering sites. The cavities were found to be the dominant gettering mechanism with only a small amount of copper gettered at the internal gettering sites. These results reveal the benefits of a segregation-type gettering mechanism for typical contamination conditions.
A key management concept for the CTBT International Monitoring System
Craft, R.
Cryptographic authentication (commonly referred to as ``technical authentication`` in Working Group B) is an enabling technology which ensures the integrity of sensor data and security of digital networks under various data security compromise scenarios. The use of cryptographic authentication,however, implies the development of a key management infrastructure for establishing trust in the generation and distribution of cryptographic keys. This paper proposes security and operational requirements for a CTBT (Comprehensive Test Ban Treaty) key management system and, furthermore, presents a public key based solution satisfying the requirements. The key management system is instantiated with trust distribution technologies similar to those currently implemented in industrial public key infrastructures. A complete system solution is developed.
Optical measurement of micromachine engine performance
Understanding the mechanisms that impact the performance of Microelectromechanical Systems (MEMS) is essential to the development of optimized designs and drive signals, as well as the qualification of devices for commercial applications. Silicon micromachines include engines that consist of orthogonally oriented linear comb drive actuators mechanically connected to a rotating gear. These gears are as small as 50 {mu}m in diameter and can be driven at rotation rates exceeding 300,000 rpm. Optical techniques offer the potential for measuring long term statistical performance data and transient responses needed to optimize designs and manufacturing techniques. The authors describe the development of Micromachine Optical Probe (MOP) technology for the evaluation of micromachine performance. The MOP approach is based on the detection of optical signals scattered by the gear teeth or other physical structures. They present experimental results for a prototype system designed to measure engine parameters as well as long term performance data.
Minimizing sulfur contamination and rinse water volume required following a sulfuric acid/hydrogen peroxide clean by performing a chemically basic rinse
Sulfuric acid hydrogen peroxide mixtures (SPM) are commonly used in the semiconductor industry to remove organic contaminants from wafer surfaces. This viscous solution is very difficult to rinse off wafer surfaces. Various rinsing conditions were tested and the resulting residual contamination on the wafer surface was measured. The addition of small amounts of a chemical base such as ammonium hydroxide to the rinse water has been found to be effective in reducing the surface concentration of sulfur and also mitigates the particle growth that occurs on SPM cleaned wafers. The volume of room temperature water required to rinse these wafers is also significantly reduced.
Intelligent tools and process development for robotic edge finishing: LDRD project final report
This report describes a project undertaken to develop an agile automated, high-precision edge finishing system, for fabricating precision parts. The project involved re-designing and adding additional capabilities to an existing finishing work-cell. The resulting work-cell may serve as prototype for production systems to be integrated in highly flexible automated production lines. The system removes burrs formed in the machining process and produces precision chamfers. The system uses an expert system to predict the burr size from the machining history. Within the CAD system, tool paths are generated for burr removal and chamfer formation. Then, the optimal grinding process is automatically selected from a database of processes. The tool trajectory and the selected process definition is then downloaded to a robotic control system to execute the operation. The robotic control system implements a hybrid fuzzy logic-classical control scheme to achieve the desired performance goals regardless of tolerance and fixturing errors. This report describes the system architecture and the system`s performance.
Electro-thermal modeling of a microbridge gas sensor
Manginell, R.P.; Smith, J.H.; Ricco, A.J.; Hughes, R.C.; Moreno, D.J.; Huber, R.J.
Fully CMOS-compatible, surface-micromachined polysilicon microbridges have been designed, fabricated, and tested for use in catalytic, calorimetric gas sensing. To improve sensor behavior, extensive electro-thermal modeling efforts were undertaken using SPICE. The validity of the SPICE model was verified comparing its simulated behavior with experiment. Temperature distribution of an electrically heated microbridges was measured using an infrared microscope. Comparisons among the measured distribution, the SPICE simulation, and distributions obtained by analytical methods show that heating at the ends of a microbridges has important implications for device response. Additional comparisons between measured and simulated current-voltage characteristics, as well as transient response, further support the accuracy of the model. A major benefit of electro- thermal modeling with SPICE is the ability to simultaneously simulate the behavior of a device and its control/sensing electronics. Results for the combination of a unique constant-resistance control circuit and microbridges gas sensor are given. Models of in situ techniques for monitoring catalyst deposition are shown to be in agreement with experiment. Finally, simulated chemical response of the detector is compared with the data, and methods of improving response through modifications in bridge geometry are predicted.
Friction and wear in surface micromachined tribological test devices
Senft, D.C.; Dugger, M.T.
We report on the design, construction, and initial testing of surface micromachined devices for measuring friction and wear. The devices measure friction coefficients on both horizontal deposited polysilicon surfaces and vertical etched polysilicon surfaces. The contact geometry of the rubbing surfaces is well-defined, and a method is presented for the determination of the normal and frictional forces. Initial observations on test devices which have been dried with supercritical CO{sub 2} and devices coated with octadecyltrichlorosilane suggest that the coatings increase the lifetime of the devices and the repeatability of the results.
A summary of the sources of input parameter values for the Waste Isolation Pilot Plant final porosity surface calculations
Butcher, B.M.
A summary of the input parameter values used in final predictions of closure and waste densification in the Waste Isolation Pilot Plant disposal room is presented, along with supporting references. These predictions are referred to as the final porosity surface data and will be used for WIPP performance calculations supporting the Compliance Certification Application to be submitted to the U.S. Environmental Protection Agency. The report includes tables and list all of the input parameter values, references citing their source, and in some cases references to more complete descriptions of considerations leading to the selection of values.
Potts-model grain growth simulations: Parallel algorithms and applications
Microstructural morphology and grain boundary properties often control the service properties of engineered materials. This report uses the Potts-model to simulate the development of microstructures in realistic materials. Three areas of microstructural morphology simulations were studied. They include the development of massively parallel algorithms for Potts-model grain grow simulations, modeling of mass transport via diffusion in these simulated microstructures, and the development of a gradient-dependent Hamiltonian to simulate columnar grain growth. Potts grain growth models for massively parallel supercomputers were developed for the conventional Potts-model in both two and three dimensions. Simulations using these parallel codes showed self similar grain growth and no finite size effects for previously unapproachable large scale problems. In addition, new enhancements to the conventional Metropolis algorithm used in the Potts-model were developed to accelerate the calculations. These techniques enable both the sequential and parallel algorithms to run faster and use essentially an infinite number of grain orientation values to avoid non-physical grain coalescence events. Mass transport phenomena in polycrystalline materials were studied in two dimensions using numerical diffusion techniques on microstructures generated using the Potts-model. The results of the mass transport modeling showed excellent quantitative agreement with one dimensional diffusion problems, however the results also suggest that transient multi-dimension diffusion effects cannot be parameterized as the product of the grain boundary diffusion coefficient and the grain boundary width. Instead, both properties are required. Gradient-dependent grain growth mechanisms were included in the Potts-model by adding an extra term to the Hamiltonian. Under normal grain growth, the primary driving term is the curvature of the grain boundary, which is included in the standard Potts-model Hamiltonian.
Electric utility capacity expansion and energy production models for energy policy analysis
This report describes electric utility capacity expansion and energy production models developed for energy policy analysis. The models use the same principles (life cycle cost minimization, least operating cost dispatching, and incorporation of outages and reserve margin) as comprehensive utility capacity planning tools, but are faster and simpler. The models were not designed for detailed utility capacity planning, but they can be used to accurately project trends on a regional level. Because they use the same principles as comprehensive utility capacity expansion planning tools, the models are more realistic than utility modules used in present policy analysis tools. They can be used to help forecast the effects energy policy options will have on future utility power generation capacity expansion trends and to help formulate a sound national energy strategy. The models make renewable energy source competition realistic by giving proper value to intermittent renewable and energy storage technologies, and by competing renewables against each other as well as against conventional technologies.
The role of technology in reducing health care costs. Final project report
Sandia National Laboratories applied a systems approach to identifying innovative biomedical technologies with the potential to reduce U.S. health care delivery costs while maintaining care quality. This study was conducted by implementing both top-down and bottom-up strategies. The top-down approach used prosperity gaming methodology to identify future health care delivery needs. This effort provided roadmaps for the development and integration of technology to meet perceived care delivery requirements. The bottom-up approach identified and ranked interventional therapies employed in existing care delivery systems for a host of health-related conditions. Economic analysis formed the basis for development of care pathway interaction models for two of the most pervasive, chronic disease/disability conditions: coronary artery disease (CAD) and benign prostatic hypertrophy (BPH). Societal cost-benefit relationships based on these analyses were used to evaluate the effect of emerging technology in these treatment areas. 17 figs., 48 tabs.
Design, demonstration and evaluation of a thermal enhanced vapor extraction system
The Thermal Enhanced Vapor Extraction System (TEVES), which combines powerline frequency heating (PLF) and radio frequency (RF) heating with vacuum soil vapor extraction, was used to effectively remove volatile organic compounds (VOCs) and semi-volatile organic compounds (SVOCs) from a pit in the chemical waste landfill (CWL) at Sandia National Laboratories (SNL) within a two month heating period. Volume average temperatures of 83{degrees}C and 112{degrees}C were reached for the PLF and RF heating periods, respectively, within the 15 ft x 45 ft x 18.5 ft deep treated volume. This resulted in the removal of 243 lb of measured toxic organic compounds (VOCs and SVOCs), 55 gallons of oil, and 11,000 gallons of water from the site. Reductions of up to 99% in total chromatographic organics (TCO) was achieved in the heated zone. Energy balance calculations for the PLF heating period showed that 36.4% of the heat added went to heating the soil, 38.5% went to evaporating water and organics, 4.2% went to sensible heat in the water, 7.1% went to heating the extracted air, and 6.6% was lost. For the RF heating period went to heating the soil, 23.5% went to evaporating water and organics, 2.4% went to sensible heat in the water, 7.5% went to heating extracted air, and 9.7% went to losses. Energy balance closure was 92.8% for the PLF heating and 98% for the RF heating. The energy input requirement per unit soil volume heated per unit temperature increase was 1.63 kWH/yd{sup 3}-{degrees}C for PLF heating and 0.73 kWH/yd{sup 3}{degrees}C for RF heating.
Conceptual model for transport processes in the Culebra Dolomite Member, Rustler Formation
Holt, R.M.
The Culebra Dolomite Member of the Rustler Formation represents a possible pathway for contaminants from the Waste Isolation Pilot Plant underground repository to the accessible environment. The geologic character of the Culebra is consistent with a double-porosity, multiple-rate model for transport in which the medium is conceptualized as consisting of advective porosity, where solutes are carried by the groundwater flow, and fracture-bounded zones of diffusive porosity, where solutes move through slow advection or diffusion. As the advective travel length or travel time increases, the nature of transport within a double-porosity medium changes. This behavior is important for chemical sorption, because the specific surface area per unit mass of the diffusive porosity is much greater than in the advective porosity. Culebra transport experiments conducted at two different length scales show behavior consistent with a multiple-rate, double-porosity conceptual model for Culebra transport. Tracer tests conducted on intact core samples from the Culebra show no evidence of significant diffusion, suggesting that at the core scale the Culebra can be modeled as a single-porosity medium where only the advective porosity participates in transport. Field tracer tests conducted in the Culebra show strong double-porosity behavior that is best explained using a multiple-rate model.
Final report of the environmental measurement-while-drilling-gamma ray spectrometer system technology demonstration at the Savannah River Site F-Area Retention Basin
The environmental measurement-while-drilling-gamma ray spectrometer (EMWD-GRS) system represents an innovative blend of new and existing technology that provides real-time environmental and drill bit data during drilling operations. The EMWD-GRS technology was demonstrated at Savannah River Site F-Area Retention Basin. The EMWD-GRS technology demonstration consisted of continuously monitoring for gamma-radiation-producing contamination while drilling two horizontal boreholes below the backfilled retention basin. These boreholes passed near previously sampled vertical borehole locations where concentrations of contaminant levels of cesium had been measured. Contaminant levels continuously recorded by the EMWD-GRs system during drilling are compared to contaminant levels previously determined through quantitative laboratory analysis of soil samples.