Publications

3 Results

Search results

Jump to search filters

Cavity Expansion: A Library for Cavity Expansion Algorithms, Version 1.0

Koteras, James R.; Brown, Kevin H.; Longcope, Donald B.; Warren, Thomas L.

Cavity expansion is a method for modeling the penetration of an axisymmetric or wedge-shaped solid body--a penetrator--into a target by using analytic expressions to capture the effects of the target on the body. Cavity expansion has been implemented as a third-party library (CavityExpansion) that can be used with explicit, transient dynamics codes. This document describes the mechanics of the cavity expansion model implemented as a third-party library. This document also describes the applications interface to CavityExpansion. A set of regression tests has been developed that can be used to test the implementation of CavityExpansion in a transient dynamics code. The mechanics of these tests and the expected results from the tests are described in detail.

More Details

Simulations of the Penetration of 6061-T6511 Aluminum Targets by Spherical-Nosed VAR 4340 Steel Projectiles

International Journal of Solids and Structures

Warren, Thomas L.

In certain penetration events it is proposed that the primary mode of deformation of the target can be approximated by known analytical expressions. In the context of an analysis code, this approximation eliminates the need for discretizing the target as well as the need for a contact algorithm. Thus, this method substantially reduces the computer time and memory requirements. In this paper a forcing function which is derived from a spherical-cavity expansion (SCE) analysis has been implemented in a transient dynamic finite element code. This irnplementation is capable of computing the structural and component responses of a projectile due to a three dimensional penetration event. Simulations are presented for 7.1 l-mm-diameter, 74.7-mm-long, spherical-nose, vacuum- arc-remelted (VAR) 4340 steel projectiles that penetrate 6061-T6511 aluminum targets. Final projectile configurations obtained from the simulations are compared with post-test radiographs obtained from the corresponding experiments. It is shown that the simulations accurately predict the permanent projectile deformation for three dimensional loadings due to incident pitch and yaw over a wide range of striking velocities.

More Details

Spherical cavity-expansion forcing function in PRONTO 3D for application to penetration problems

Warren, Thomas L.

In certain penetration events the primary mode of deformation of the target can be approximated by known analytical expressions. In the context of an analysis code, this approximation eliminates the need for modeling the target as well as the need for a contact algorithm. This technique substantially reduces execution time. In this spirit, a forcing function which is derived from a spherical-cavity expansion analysis has been implemented in PRONTO 3D. This implementation is capable of computing the structural and component responses of a projectile due to three dimensional penetration events. Sample problems demonstrate good agreement with experimental and analytical results.

More Details
3 Results
3 Results