Publications

Results 26–29 of 29

Search results

Jump to search filters

Interfacial Microstructure Formed by Reactive Metal Penetration of Al into Mullite

Journal of Materials Research

Loehman, Ronald E.

Microstructures in the reaction interface between molten Al and dense mullite have been studied by transmission electron microscopy to provide insight into mechanisms for forming ceramic-metal composites by reactive metal penetration. The reactions, which have the overall stoichiometry, 3Al{sub 6}Si{sub 2}O{sub 13} + (8 + x)Al {r_arrow} 13Al{sub 2}O{sub 3} + xAl + 6Si, were carried out at temperatures of 900, 1100, and 1200 C for 5 minutes and 60 minutes, and 1400 C for 15 minutes. Observed phases generally were those given in the above reaction, although their proportions and interfacial microstructure differed strongly with reaction temperature. After reaction at 900 C, a thin Al layer separated unreacted mullite from the {alpha}-Al{sub 2}O{sub 3} and Al reaction products. No Si phase was found near the reaction front. After 5 minutes at 1100 C, the reaction front contained Si, {alpha}-Al{sub 2}O{sub 3}, and an aluminum oxide phase with a high concentration of Si. After 60 minutes at 1100 C many of the {alpha}-Al{sub 2}O{sub 3} particles were needle-shaped with a preferred orientation. After reaction at 1200 C, the reaction front contained a high density of Si particles that formed a continuous layer over many of the mullite grains. The sample reacted at 1400 C for 15 minutes had a dense {alpha}-Al{sub 2}O{sub 3} reaction layer less than 2 {micro}m thick. Some isolated Si particles were present between the {alpha}-Al{sub 2}O{sub 3} layer and the unreacted mullite. Using previously measured reaction kinetics data the observed temperature dependence of the interfacial microstructure have been modeled as three sequential steps, each one of which is rate-limiting in a different temperature range.

More Details

Recent progress in ceramic joining

Loehman, Ronald E.

Both fundamental and practical aspects of ceramic joining are understood well enough for many, if not most, applications requiring moderate strengths at room temperature. This paper argues that the two greatest needs in ceramic joining are for techniques to join buried interfaces by selective heating, and methods for joining ceramics for use at temperatures of 800 to 1,200 C. Heating with microwave radiation or with high-energy electron beams has been used to join buried ceramic interfaces, for example SiC to SiC. Joints with varying levels of strength at temperatures of 600 to 1,000 C have been made using four techniques: (1) transient liquid phase bonding; (2) joining with refractory braze alloys; (3) joining with refractory glass compositions; and (4) joining using preceramic polymers. Joint strengths as high as 550 MPa at 1,000 C have been reported for silicon nitride-silicon nitride bonds tested in four-point flexure.

More Details

TEM characterization of Al/Al{sub 2}O{sub 3} composite fabricated by reactive metal infiltration

Loehman, Ronald E.

The microstructure of Al/{alpha}-Al{sub 2}0{sub 3} composites made by infiltrating Al into dense mullite preforms has been characterized using transmission electron microscopy. Observations revealed that the formation of the Al/Al{sub 2}0{sub 3} composites involves three stages. Initially, Al infiltrates into a dense mullite preform through grain boundary diffusion, and reacts with mullite at grain boundaries to form a partial reaction zone. Then, a complete reaction takes place in the reaction region between the partial reaction zone and the full reaction zone to convert the dense mullite preform to a composite of {alpha}-Al{sub 2}0{sub 3} (matrix) and an Al-Si phase (thin channels). Finally, the reduced Si from the reaction diffuses out of the Al/Al{sub 2}0{sub 3} composite through the metal channels, whereas Al from the molten Al pool is continuously drawn to the reaction region until the mullite preform is consumed or the sample is removed from the molten Al pool. Based on the observed microstructure, infiltration mechanisms have been discussed, and a growth model of the composites is proposed in which the process involves repeated nucleation of Al{sub 2}0{sub 3} grains and grain growth.

More Details

Joining engineering ceramics

Loehman, Ronald E.

Joining ceramics to metals requires solutions to both scientific and practical engineering problems. Scientific issues include understanding the fundamental nature of adhesion at metal-ceramic interfaces, predicting interfacial reactions, and understanding the relation between chemical bonding and mechanical stresses at the interface on the atomic level. Engineering a specific ceramic-metal joint requires finding the optimum among what may be inherently incompatible properties. The following review briefly outlines some of the different methods for joining ceramics. Following that, some fundamental aspects of ceramic joining are presented. The paper concludes with examples of ceramic bonding in several engineering ceramic systems.

More Details
Results 26–29 of 29
Results 26–29 of 29