Initial National Reliability Database (NRD) Results
Abstract not provided.
Abstract not provided.
Abstract not provided.
The US wind Industry has experienced remarkable growth since the turn of the century. At the same time, the physical size and electrical generation capabilities of wind turbines has also experienced remarkable growth. As the market continues to expand, and as wind generation continues to gain a significant share of the generation portfolio, the reliability of wind turbine technology becomes increasingly important. This report addresses how operations and maintenance costs are related to unreliability - that is the failures experienced by systems and components. Reliability tools are demonstrated, data needed to understand and catalog failure events is described, and practical wind turbine reliability models are illustrated, including preliminary results. This report also presents a continuing process of how to proceed with controlling industry requirements, needs, and expectations related to Reliability, Availability, Maintainability, and Safety. A simply stated goal of this process is to better understand and to improve the operable reliability of wind turbine installations.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Proposed for publication in Energy Economics.
Abstract not provided.
The U.S. Department of Energy's (DOE's) GeoPowering the West (GPW) program works with the U.S. geothermal industry, power companies, industrial and residential consumers, and federal, state, and local officials to provide technical and institutional support and limited, cost-shared funding to state-level activities. By demonstrating the benefits of geothermal energy, GPW increases state and regional awareness of opportunities to enhance local economies and strengthen our nation's energy security while minimizing environmental impact. By identifying barriers to development and working with others to eliminate them, GPW helps a state or region create a regulatory and economic environment that is more favorable for geothermal and other renewable energy development. Electricity is produced using expanding steam or very hot water from the underground reservoir to spin a conventional turbine-generator. Geothermal power plants operate at high capacity factors (70-100%), with availability factors typically greater than 95%. Geothermal plants are among the cleanest sources of electric power available. Direct use applications directly pipe hot water from geothermal resources to provide heat for industrial processes, crop drying, greenhouses, aquaculture, recreation, sidewalk snow-melting, and buildings. Geothermal district heating systems supply heat to multiple buildings through a network of pipes carrying the hot geothermal water.
Transactions - Geothermal Resources Council
The implementation of GeoPowering the West (GPW), a communication and outreach component of the Department of Energy (DOE) to bring geothermal heat and power to homes and business across the West was discussed. GPQ helps to overcome financial risks, environmantal misconceptions, transactional costs, creates public awareness and define the benefits of geothermal development. The GPW complements the research and development activities conducted by the department and its national laboratories. It was stated that the GPW will continue to provide technical assistance to states that are considering to implement Renewable energy policies.
Over the past two years, New Mexico has been engaged in a significant new approach to implement large purchases of solar power. This effort followed a regulatory process that treated solar power generation similar to conventional generation obtained by an investor-owned utility under the regulation of a public utility commission. In 1997, Public Service Company of New Mexico (PNM) gained approval to purchase power from a 100-MW combustion turbine facility that would be owned and operated by a wholesale generator. At the same time it issued the approval, and following discussions with the utility, the New Mexico Public Utility Commission (NMPUC) also required PNM to issue a request for proposal for a 5-MW central station solar facility, a major step for solar technologies in the state, in what would be the world's largest of its technology type. In cooperation with the staff of the NMPUC, PNM reviewed the proposals received, and Applied Power Corporation was selected for the photovoltaic portion of the proposed plan; retaining ownership of the plant, assuming the risks connected with the technology, and operating the plant in exchange for a power purchase agreement in a first-of-its-kind contract for photovoltaics. During the NMPUC hearings, various parties raised significant opposition to the cost-recovery mechanism that was proposed and voiced issues about the type of solar plant, its size, cost and the tiding approaches to building it. Because of these issues, alternative proposals were put forth that reduced the size and costs of the plant and had implied changes in ownership and risks. The order issued by the NMPUC on October 21, 1998, requires PNM to impose a charge of 0.5% on its retail electric customers' monthly bills to be used to acquire the solar facilities, but also to obtain other renewable electric power resources, both on a pay-as-you-go basis. This paper identifies the issues and their resolution that similar projects are expected to encounter.
This report highlights Sandia National Laboratories' work in the following areas: photometrics and optical development; still and time-lapse photography; real-time motion photography; high-speed photography; image-motion photography; schlieren photography; ultra-high-speed photography; electronic imaging; shuttered video and high-speed video; infrared imaging radiometry; exoatmospheric photography and videography; microdensitometry and image analysis; and optical system design and development.