Publications

Results 26–50 of 66

Search results

Jump to search filters

Parametric Study of Injection Rates With Solenoid Injectors in an Injection Quantity and Rate Measuring Device

Journal of Engineering for Gas Turbines and Power

Busch, Stephen B.; Miles, Paul C.

A Moehwald HDA (HDA is a German acronym: Hydraulischer Druckanstieg: hydraulic pressure increase) injection quantity and rate measuring unit is used to investigate injection rates obtained with a fast-acting, preproduction diesel solenoid injector. Experimental parametric variations are performed to determine their impact on measured injection rate traces. A pilot-main injection strategy is investigated for various dwell times; these preproduction injectors can operate with very short dwell times with distinct pilot and main injection events. Dwell influences the main injection rate shape. A comparison between a diesel-like fuel and a gasoline-like fuel shows that injection rates are comparable for a single injection but dramatically different for multiple injections with short dwells.

More Details

Experimental and Numerical Investigations of Close-Coupled Pilot Injections to Reduce Combustion Noise in a Small-Bore Diesel Engine

SAE International Journal of Engines

Zha, Kan Z.; Miles, Paul C.; Warey, Alok; Pesce, Francesco; Peterson, Richard; Vassallo, Alberto

A pilot-main injection strategy is investigated for a part-load operating point in a single cylinder optical Diesel engine. As the energizing dwell between the pilot and main injections decreases below 200 μs, combustion noise reaches a minimum and a reduction of 3 dB is possible. This decrease in combustion noise is achieved without increased pollutant emissions. Injection schedules employed in the engine are analyzed with an injection analyzer to provide injection rates for each dwell tested. Two distinct injection events are observed even at the shortest dwell tested; rate shaping of the main injection occurs as the dwell is adjusted. High-speed elastic scattering imaging of liquid fuel is performed in the engine to examine initial liquid penetration rates. The penetration rate data provide evidence that rate shaping of the initial phase of the main injection is occurring in the engine and that this rate shaping is largely consistent with the injection rate data, but the results demonstrate that these changes are not responsible for the observed trend in combustion noise. A zero-dimensional model is created to investigate the causes of the observed combustion noise behavior. The trend in simulated combustion noise values agree well with the experimentally determined trend, which is associated with two main factors: relative changes in combustion phasing of the pilot and main heat release events and suppression of the pilot apparent heat release for dwell times near the minimum-noise dwell. Two possible mechanisms by which the relative phasing between the pilot and the main heat release events impacts combustion noise are proposed.

More Details

Characterization of Flow Asymmetry During the Compression Stroke Using Swirl-Plane PIV in a Light-Duty Optical Diesel Engine with the Re-entrant Piston Bowl Geometry

SAE International Journal of Engines

Zha, Kan Z.; Busch, Stephen B.; Miles, Paul C.; Wijeyakulasuriya, Sameera; Mitra, Saurav; Senecal, P.K.

Based on the ensemble-averaged velocity results, flow asymmetry characterized by the swirl center offset and the associated tilting of the vortex axis is quantified. The observed vertical tilting of swirl center axis is similar for tested swirl ratios (2.2 and 3.5), indicating that the details of the intake flows are not of primary importance to the late-compression mean flow asymmetry. Instead, the geometry of the piston pip likely impacts the flow asymmetry. The PIV results also confirm the numerically simulated flow asymmetry in the early and late compression stroke: at BDC, the swirl center is located closer to the exhaust valves for swirl-planes farther away from the fire deck; near TDC, the swirl center is located closer to the intake valves for swirl-planes farther away from the fire deck. It is evident from experimentally determined velocity fields that the transition between these two asymmetries has a different path for various swirl ratios, suggesting the influence of intake port flows. Flow field asymmetry can lead to an asymmetric mixture preparation in Diesel engines. To understand the evolution of this asymmetry, it is necessary to characterize the in-cylinder flow over the full compression stroke. Moreover, since bowl-in-piston cylinder geometries can substantially impact the in-cylinder flow, characterization of these flows requires the use of geometrically correct pistons. In this work, the flow has been visualized via a transparent piston top with a realistic bowl geometry, which causes severe experimental difficulties due to the spatial and temporal variation of the optical distortion. An advanced optical distortion correction method is described to allow reliable particle image velocimetry (PIV) measurements through the full compression stroke.

More Details

Principal Component Analysis and Study of Port-Induced Swirl Structures in a Light-Duty Optical Diesel Engine

SAE Technical Papers

Perini, Federico; Zha, Kan Z.; Busch, Stephen B.; Miles, Paul C.; Reitz, Rolf D.

In this work computational and experimental approaches are combined to characterize in-cylinder flow structures and local flow field properties during operation of the Sandia 1.9L light-duty optical Diesel engine. A full computational model of the single-cylinder research engine was used that considers the complete intake and exhaust runners and plenums, as well as the adjustable throttling devices used in the experiments to obtain different swirl ratios. The in-cylinder flow predictions were validated against an extensive set of planar PIV measurements at different vertical locations in the combustion chamber for different swirl ratio configurations. Principal Component Analysis was used to characterize precession, tilting and eccentricity, and regional averages of the in-cylinder turbulence properties in the squish region and the piston bowl. Complete sweeps of the port throttle configurations were run to study their effects on the flow structure, together with their correlation with the swirl ratio. Significant deviations between the flows in the piston bowl and squish regions were observed. Piston bowl design, more than the swirl ratio, was identified to foster flow homogeneity between these two regions. Also, analysis of the port-induced flow showed that port geometry, more than different intake port mass flow ratios, can improve turbulence levels in-cylinder.

More Details

The history and evolution of optically accessible research engines and their impact on our understanding of engine combustion

ASME 2014 Internal Combustion Engine Division Fall Technical Conference, ICEF 2014

Miles, Paul C.

The development and application of optically accessible engines to further our understanding of in-cylinder combustion processes is reviewed, spanning early efforts in simplified engines to the more recent development of high-pressure, highspeed engines that retain the geometric complexities of modern production engines. Limitations of these engines with respect to the reproduction of realistic metal test engine characteristics and performance are identified, as well as methods that have been used to overcome these limitations. Lastly, the role of the work performed in these engines on clarifying the fundamental physical processes governing the combustion process and on laying the foundation for predictive engine simulation is summarized.

More Details
Results 26–50 of 66
Results 26–50 of 66