Publications

5 Results

Search results

Jump to search filters

Drop Interactions with the Conical Shock Structure Generated by a Mach 4.5 Projectile

AIAA Journal

Guildenbecher, Daniel R.; Delgado, Paul M.; White, Glen W.; Reardon, Sam M.; Stauffacher, Howard L.; Beresh, Steven J.; Daniel, Kyle

This work presents measurements of liquid drop deformation and breakup time behind approximately conical shock waves and evaluates the predictive capabilities of low-order models and correlations developed using planar shock experiments. A conical shock was approximated by firing a bullet at Mach 4.5 past a vertical column of water drops with a mean initial diameter of 192 µm. The time-resolved drop position and maximum transverse dimension were characterized using backlit stereo images taken at 500 kHz. The gas density and velocity fields experienced by the drops were estimated using a Reynolds-averaged Navier-Stokes simulation of the bullet. Classical correlations predict drop breakup times and deformation in error by a factor of 3 or more. The Taylor analogy breakup (TAB) model predicts deformed drop diameters that agree within the confidence bounds of the ensemble-averaged experimental values using a dimensionless constant C2 = 2 compared to the accepted value C2 = 2/3. Results demonstrate existing correlations are inadequate for predicting the drop response to the three-dimensional relaxation of the flowfield downstream of a conical-like shock and suggest the TAB model results represent a path toward improved predictions.

More Details

Overview of Ablation Research at Sandia National Laboratories

Roberts, Scott A.; Anderson, Nicholas; Arienti, Marco A.; Armijo, Kenneth M.; Blonigan, Patrick J.; Casper, Katya M.; Collins, Lincoln; Creveling, Peter; Delgado, Paul M.; Di Stefano, Martin; Engerer, Jeffrey D.; Fisher, Travis C.; Foster, Collin W.; Gosma, Mitchell; Hansen, Michael A.; Hernandez-Sanchez, Bernadette A.; Hess, Ryan F.; Kieweg, Sarah K.; Lynch, Kyle P.; Mussoni, Erin E.; Potter, Kevin M.; Tencer, John T.; van de Werken, Nekoda v.; Wilson, Zachary; Wagner, Justin W.; Wagnild, Ross M.

Abstract not provided.

Drop Interaction with a Conical Shock

AIAA Science and Technology Forum and Exposition, AIAA SciTech Forum 2022

Daniel, Kyle; Guildenbecher, Daniel R.; Delgado, Paul M.; White, Glen W.; Reardon, Sam M.; Stauffacher, Howard L.; Beresh, Steven J.

This work presents an experimental investigation of the deformation and breakup of water drops behind conical shock waves. A conical shock is generated by firing a bullet at Mach 4.5 past a vertical column of drops with a mean initial diameter of 192 µm. The time-resolved drop position and maximum transverse dimension are characterized using backlit stereo videos taken at 500 kHz. A Reynolds-Averaged Navier Stokes (RANS) simulation of the bullet is used to estimate the gas density and velocity fields experienced by the drops. Classical correlations for breakup times derived from planar-shock/drop interactions are evaluated. Predicted drop breakup times are found to be in error by a factor of three or more, indicating that existing correlations are inadequate for predicting the response to the three-dimensional relaxation of the velocity and thermodynamic properties downstream of the conical shock. Next, the Taylor Analogy Breakup (TAB) model, which solves a transient equation for drop deformation, is evaluated. TAB predictions for drop diameter calculated using a dimensionless constant of C2 = 2, as compared to the accepted value of C2 = 2/3, are found to agree within the confidence bounds of the ensemble averaged experimental values for all drops studied. These results suggest the three-dimensional relaxation effects behind conical shock waves alter the drop response in comparison to a step change across a planar shock, and that future models describing the interaction between a drop and a non-planar shock wave should account for flow field variations.

More Details
5 Results
5 Results