Magneto-luminescence properties of GaAsSbN/GaAs quantum well structures
Proposed for publication in Applied Physics Letters.
Abstract not provided.
Proposed for publication in Applied Physics Letters.
Abstract not provided.
Proposed for publication in Applied Physics Letters.
Abstract not provided.
Proposed for publication in Journal of Applied Physics.
Abstract not provided.
The goal of this LDRD was to investigate III-antimonide/nitride based materials for unique semiconductor properties and applications. Previous to this study, lack of basic information concerning these alloys restricted their use in semiconductor devices. Long wavelength emission on GaAs substrates is of critical importance to telecommunication applications for cost reduction and integration into microsystems. Currently InGaAsN, on a GaAs substrate, is being commercially pursued for the important 1.3 micrometer dispersion minima of silica-glass optical fiber; due, in large part, to previous research at Sandia National Laboratories. However, InGaAsN has not shown great promise for 1.55 micrometer emission which is the low-loss window of single mode optical fiber used in transatlantic fiber. Other important applications for the antimonide/nitride based materials include the base junction of an HBT to reduce the operating voltage which is important for wireless communication links, and for improving the efficiency of a multijunction solar cell. We have undertaken the first comprehensive theoretical, experimental and device study of this material with promising results. Theoretical modeling has identified GaAsSbN to be a similar or potentially superior candidate to InGaAsN for long wavelength emission on GaAs. We have confirmed these predictions by producing emission out to 1.66 micrometers and have achieved edge emitting and VCSEL electroluminescence at 1.3 micrometers. We have also done the first study of the transport properties of this material including mobility, electron/hole mass, and exciton reduced mass. This study has increased the understanding of the III-antimonide/nitride materials enough to warrant consideration for all of the target device applications.
In a superposition of quantum states, a bit can be in both the states '0' and '1' at the same time. This feature of the quantum bit or qubit has no parallel in classical systems. Currently, quantum computers consisting of 4 to 7 qubits in a 'quantum computing register' have been built. Innovative algorithms suited to quantum computing are now beginning to emerge, applicable to sorting and cryptanalysis, and other applications. A framework for overcoming slightly inaccurate quantum gate interactions and for causing quantum states to survive interactions with surrounding environment is emerging, called quantum error correction. Thus there is the potential for rapid advances in this field. Although quantum information processing can be applied to secure communication links (quantum cryptography) and to crack conventional cryptosystems, the first few computing applications will likely involve a 'quantum computing accelerator' similar to a 'floating point arithmetic accelerator' interfaced to a conventional Von Neumann computer architecture. This research is to develop a roadmap for applying Sandia's capabilities to the solution of some of the problems associated with maintaining quantum information, and with getting data into and out of such a 'quantum computing accelerator'. We propose to focus this work on 'quantum I/O technologies' by applying quantum optics on semiconductor nanostructures to leverage Sandia's expertise in semiconductor microelectronic/photonic fabrication techniques, as well as its expertise in information theory, processing, and algorithms. The work will be guided by understanding of practical requirements of computing and communication architectures. This effort will incorporate ongoing collaboration between 9000, 6000 and 1000 and between junior and senior personnel. Follow-on work to fabricate and evaluate appropriate experimental nano/microstructures will be proposed as a result of this work.
Proposed for publication in the Journal of Crystal Growth.
GaAsSbN was grown by organometallic vapor phase epitaxy (OMVPE) as an alternative material to InGaAsN for long wavelength emission on GaAs substrates. OMVPE of GaAsSbN using trimethylgallium, 100% arsine, trimethylantimony, and 1,1-dimethylhydrazine was found to be kinetically limited at growth temperatures ranging from 520 C to 600 C, with an activation energy of 10.4 kcal/mol. The growth rate was linearly dependent on the group III flow and has a complex dependence on the group V constituents. A room temperature photoluminescence wavelength of >1.3 {micro}m was observed for unannealed GaAs{sub 0.69}Sb{sub 0.3}N{sub 0.01}. Low temperature (4 K) photoluminescence of GaAs{sub 0.69}Sb{sub 0.3}N{sub 0.01} shows an increase in FWHM of 2.4-3.4 times the FWHM of GaAs{sub 0.7}Sb{sub 0.3}, a red shift of 55-77 meV, and a decrease in intensity of one to two orders of magnitude. Hall measurements indicate a behavior similar to that of InGaAsN, a 300 K hole mobility of 350 cm{sup 2}/V-s with a 1.0 x 10{sup 17}/cm{sup 3} background hole concentration, and a 77 K mobility of 1220 cm{sup 2}/V-s with a background hole concentration of 4.8 x 10{sup 16}/cm{sup 3}. The hole mass of GaAs{sub 0.7}Sb{sub 0.3}/GaAs heterostructures was estimated at 0.37-0.40m{sub o}, and we estimate an electron mass of 0.2-0.3m{sub o} for the GaAs{sub 0.69}Sb{sub 0.3}N{sub 0.01}/GaAs system. The reduced exciton mass for GaAsSbN was estimated at about twice that found for GaAsSb by a comparison of diamagnetic shift vs. magnetic field.
Proposed for publication in the Journal of Physical Chemistry B.
We have developed force fields for the calculation of adsorption of NH{sub 3}, CO{sub 2}, and H{sub 2}O on zeolite 4A by performing Gibbs ensemble Monte Carlo simulations to fit experimental isotherms at 298 K. The calculated NH{sub 3} and CO{sub 2} isotherms are in excellent agreement with experimental data over a wide range of temperatures and several orders of magnitude in pressure. We have calculated isotherms for H{sub 2}O in 4A using two different models and have found that H{sub 2}O saturates zeolite 4A even at pressures as low as 0.01 kPa for the range of temperatures studied. We have studied the geometry of the adsorption sites and their dependence on loading. At low pressures, CO{sub 2} molecules adsorb with their longitudinal axis pointing toward the center of the supercage, whereas at higher pressures, the two oxygen atoms are equidistant from the Na atom in the binding site.
Materials Research Society Symposium - Proceedings
We present low-temperature (T = 4K) photoluminescence studies of the effect of adding nitrogen to 6-nm-wide single-strained GaAsSb quantum wells on GaAs. The samples were grown by both MBE and MOCVD techniques. The nominal Sb concentration is about 30%. Adding about 1 to 2% N drastically reduced the bandgap energies from 1 to 0.75 eV, or 1.20 to 1.64 μm. Upon performing ex situ rapid thermal anneals, 825°C for 10s, the band gap energies as well as the photoluminescence intensities increased. The intensities increased by an order of magnitude for the annealed samples and the band gap energies increased by about 50 - 100 meV, depending on growth temperatures. The photoluminescence linewidths tended to decrease upon annealing. Preliminary results of a first-principles band structure calculation for the GaAsSbN system are also presented.
Abstract not provided.
Abstract not provided.
Modelling and Simulation in Materials Science Engineering
The authors discuss their new implementation of the Adaptive Coordinate Real-space Electronic Structure (ACRES) method for studying the atomic and electronic structure of infinite periodic as well as finite systems, based on density functional theory. This improved version aims at making the method widely applicable and efficient, using high performance Fortran on parallel architectures. The scaling of various parts of an ACRES calculation is analyzed and compared to that of plane-wave based methods. The new developments that lead to enhanced performance, and their parallel implementation, are presented in detail. They illustrate the application of ACRES to the study of elemental crystalline solids, molecules and complex crystalline materials, such as blue bronze and zeolites.
The optical gain spectra for GaInNAs/GaAs quantum wells are computed using a microscopic laser theory. From these spectra, the peak gain and carrier radiative decay rate as functions of carrier density are determined. These dependences allow the study of the lasing threshold current density of GaInNAs/GaAs quantum well structures.
Physical Review Letters
The conduction band minimum formation of GaAs{sub 0.5{minus}y}P{sub 0.5{minus}y}N{sub 2y} is investigated for small nitrogen compositions (0.1% < 2y < 1.0%), by using a pseudopotential technique. This formation is caused by two unusual processes both involving the deep-gap impurity level existing in the dilute alloy limit y {r_arrow} 0. The first process is an anticrossing with the {Gamma}{sub Ic}-like extended state of GaAs{sub 0.5}P{sub 0.5}. The second process is an interaction with other impurity levels forming a subband. These two processes are expected to occur in any alloys exhibiting a deep-gap impurity level at one of its dilute limit.
Physical Review B
Se-intercalated graphite compounds (Se-GICs) are considered as promising candidates for room-temperature thermoelectric cooling devices. Here the authors analyze the crystallographic structure and electronic properties of these materials within the framework of density-functional theory. First, the Adaptive-Coordinate Real-space Electronic Structure (ACRES) code is used to determine the stable structure of a representative stage-2 Se-GIC by relaxing atomic positions. The stable configuration is found to be a pendant-type structure, in which each selenium is bonded covalently to two atoms within the same carbon layer, causing a local distortion of the in-plane conjugation of the graphite. Then, they use the full potential linearized augmented plane wave (FP-LAPW) method to calculate the electronic band structure of the material and discuss its properties. Near the Fermi energy E{sub F}, there are wide bands originating from the host graphitic electronic structure and a few very narrow bands mainly of Se 4p character. The latter bands contribute to high peaks in the density of states close to E{sub F}. They show that this feature, although typical of many good thermoelectrics, does not necessarily imply high thermopower in the case of Se-GICs.
Physical Review Letters
The authors have determined the reconstructions present on AlSb and GaSb(001) under conditions typical for device growth by molecular beam epitaxy. Within the range of Sb flux and temperature where the diffraction pattern is nominally (1 x 3), three distinct (4 x 3) reconstructions actually occur. The three structures are different than those previously proposed for these growth conditions, with two incorporating mixed III-V dimers on the surface. The presence of these hetero-dimers in the top Sb layer leads to an island nucleation and growth mechanism fundamentally different than for other III-V systems.
Physical Review B
The authors report a measurement of the variation of the value of the linewidth of an excitonic transition in InGaAsN alloys (1 and 2% nitrogen) as a function of hydrostatic pressure using photoluminescence spectroscopy. The samples were grown by metal-organic chemical vapor deposition and the photoluminescence measurements were performed a 4K. The authors find that the value of the excitonic linewidth increases as a function of pressure until about 100 kbars after which it tends to saturate. This change in the excitonic linewidth is used to derive the pressure variation of the reduced mass of the exciton using a theoretical formalism which is based on the premise that the broadening of the excitonic transition is caused primarily by compositional fluctuations in a completely disordered alloy. The variation of the excitonic reduced mass thus derived is compared with that recently determined using a first-principles band structure calculation based on local density approximation.
Proceedings of SPIE - The International Society for Optical Engineering
The variation of the value of the linewidth of an excitonic transition in InGaAsN alloys (1% and 2% nitrogen) as a function of hydrostatic pressure using photoluminescence spectroscopy is studied at 4 K. The excitonic linewidth increases as a function of pressure until about 100 kbar after which it tends to saturate. This pressure dependent excitonic linewidth is used to derive the pressure variation of the exciton reduced mass using a theoretical formalism based on the premise that the broadening of the excitonic transition is caused primarily by compositional fluctuations in a completely disordered alloy. The linewidth derived ambient pressure masses are compared and found to be in agreement with other mass measurements. The variation of this derived mass is compared with the results from a nearly first-principles approach in which calculations based on the local density approximation to the Kohn-Sham density functional theory are corrected using a small amount of experimental input.