Role of Multi-Level Defects in InGaN LED Efficiency Droop (invited)
Abstract not provided.
Abstract not provided.
In modeling thermal transport in nanoscale systems, classical molecular dynamics (MD) explicitly represents phonon modes and scattering mechanisms, but electrons and their role in energy transport are missing. Furthermore, the assumption of local equilibrium between ions and electrons often fails at the nanoscale. We have coupled MD (implemented in the LAMMPS MD package) with a partial differential equation based representation of the electrons (implemented using finite elements). The coupling between the subsystems occurs via a local version of the two-temperature model. Key parameters of the model are calculated using the Time Dependent Density Functional Theory with either explicit or implicit energy flow. We will discuss application of this work in the context of the US DOE Center for Integrated Nanotechnologies (CINT).
Abstract not provided.
Physics Review B
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
Physical Review Letters
Abstract not provided.
Physical Review Letters
Abstract not provided.
Abstract not provided.
Abstract not provided.
Abstract not provided.
A finite temperature version of 'exact-exchange' density functional theory (EXX) has been implemented in Sandia's Socorro code. The method uses the optimized effective potential (OEP) formalism and an efficient gradient-based iterative minimization of the energy. The derivation of the gradient is based on the density matrix, simplifying the extension to finite temperatures. A stand-alone all-electron exact-exchange capability has been developed for testing exact exchange and compatible correlation functionals on small systems. Calculations of eigenvalues for the helium atom, beryllium atom, and the hydrogen molecule are reported, showing excellent agreement with highly converged quantumMonte Carlo calculations. Several approaches to the generation of pseudopotentials for use in EXX calculations have been examined and are discussed. The difficult problem of finding a correlation functional compatible with EXX has been studied and some initial findings are reported.
Abstract not provided.
Abstract not provided.
Journal of Physics Condensed Matter
The optimized effective potential (OEP) method provides an additional level of exactness in the computation of electronic structures, e.g. the exact exchange energy can be used. This extra freedom is likely to be important in moving density functional methods beyond traditional approximations such as the local density approximation. We provide a new density-matrix-based derivation of the gradient of the Kohn-Sham energy with respect to the effective potential. This gradient can be used to iteratively minimize the energy in order to find the OEP. Previous work has indicated how this can be done in the zero temperature limit. This paper generalizes the previous results to the finite temperature regime. Equating our gradient to zero gives a finite temperature version of the OEP equation. © IOP Publishing Ltd.
We report the implementation of an iterative scheme for calculating the Optimized Effective Potential (OEP). Given an energy functional that depends explicitly on the Kohn-Sham wave functions, and therefore, implicitly on the local effective potential appearing in the Kohn-Sham equations, a gradient-based minimization is used to find the potential that minimizes the energy. Previous work has shown how to find the gradient of such an energy with respect to the effective potential in the zero-temperature limit. We discuss a density-matrix-based derivation of the gradient that generalizes the previous results to the finite temperature regime, and we describe important optimizations used in our implementation. We have applied our OEP approach to the Hartree-Fock energy expression to perform Exact Exchange (EXX) calculations. We report our EXX results for common semiconductors and ordered phases of hydrogen at zero and finite electronic temperatures. We also discuss issues involved in the implementation of forces within the OEP/EXX approach.
The potential for implementing quantum coherence in semiconductor self-assembled quantum dots has been investigated theoretically and experimentally. Theoretical modeling suggests that coherent dynamics should be possible in self-assembled quantum dots. Our experimental efforts have optimized InGaAs and InAs self-assembled quantum dots on GaAs for demonstrating coherent phenomena. Optical investigations have indicated the appropriate geometries for observing quantum coherence and the type of experiments for observing quantum coherence have been outlined. The optical investigation targeted electromagnetically induced transparency (EIT) in order to demonstrate an all optical delay line.
Abstract not provided.
Abstract not provided.